Study on the stability of lipase of terminally cyclized Thermomyces lanuginosus
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective: To obtain industrial standard lipase with high activity and stability, Butelase 1 ligase was used to connect the N- and C-termini of Thermomyces lanuginosus lipase (TLL), and then the protein characteristics, including heat stability, protease resistance, and enzymatic kinetics were analyzed. Methods: His6 affinity column was used to purify recombinant Butelase 1 (rButelase 1) and TLL (rTLL) from mammalian cells and E. co- li; rButelase 1 to was utilized connect the N- and C-termini of rTLL to generate circular rTLL (cTLL); the enzymatic activity, the heat stability, the protease resistance, the resistance to heat-induced precipitation, and the enzymatic kinetics were analyzed to determine the difference of rTLL and cTLL. Results: Recombinant rButelase 1 and rTLL expressed in mammalian cells and E. co-li were purified; cTLL was obtained, and the comparable enzymatic activity was found in both cTLL and rTLL. After heat treatment at 70 ℃ for 180 min, most of cTLL remained soluble and 95% of its activity, while rTLL was almost completely precipitated and lost most of its activity. cTLL has characteristics of stable proteins, such as uniform particle size and molecular weight distribution. Conclusion: Butelase 1 can effectively circularize lipase from T. lanuginosus. cTLL maintained its enzymatic activity. Meanwhile, its protein characteristics, including thermal stability and protease resistance, has also been improved.

    Reference
    Related
    Cited by
Get Citation

宋文,武霞霞,娄海伟,等.末端环化疏棉状嗜热丝孢菌脂肪酶的稳定性[J].食品与机械英文版,2022,(8):40-43,54.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 16,2022
  • Published:
Article QR Code