Path planning of food robot based on density peak clustering parallel sparrow search algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective:In order to improve the efficiency of multi-point moving path planning of food picking robot, a path planning method of food picking robot based on density peak clustering parallel sparrow search algorithm is proposed.Methods:The path planning model of food picking robot was established with the total moving distance, path smoothness between points and moving safety as the evaluation indexes. While ensuring the moving safety of the robot, the path smoothness was improved and the moving distance was reduced as much as possible. The density peak clustering sparrow search algorithm (DSSA) was designed, as the improved density peak clustering algorithm was used to cluster the sparrow population, divided different sub populations and defined the sparrow iterative evolution mode according to the clustering results. Combined with the multi-point path planning model and the four potential moving paths between points, the sparrow coding mode was redefined and a parallel computing architecture was build to improve the accuracy and operation efficiency of DSSA solving the path planning model.Results:The simulation results showed that compared with other food robot path planning methods, the total moving distance was reduced by 7.3%~39.2% and the moving time was reduced by 26.7%~50.1%.Conclusion:The proposed method can significantly improve the path planning efficiency of food sorting robot, which has certain application value for improving the production efficiency of food processing enterprises.

    Reference
    Related
    Cited by
Get Citation

郝杰,唐叶剑.于密度峰值聚类并行麻雀搜索算法的食品机器人路径规划[J].食品与机械英文版,2022,(6):120-127.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 02,2022
  • Published:
Article QR Code