Development and application of energy-saving multiple-silk air separation system
CSTR:
Author:
Affiliation:

(1. Xuchang Cigarette Factory, China Tobacco Henan Industrial Co., Ltd., Xuchang, Henan 461000, China; 2. Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, China)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the existing problems of air separation equipment of high energy consumption, loss of moisture and temperature, circulating air was used to reduce energy consumption, moisture and temperature dissipation, and the energy-saving multiple-silk air separation system was developed. The system was composed of material uniform and dilution, first and second cycle the air separation systems, dust extraction pipe and other devices. Through uniform thinning of the material, both the side and vertical air entered and floated to improve wind effect, by the first and second cycle air separation systems. 90% of the circulated air were utilized to reduce the energy consumption and water loss. Moreover, system sealed with a closed conveyer belt combined with a miscellaneous gas locking device was used to prevent dust. The processing and product quality and energy consumption for the Energy-saving between both the circulation wind type of multi-stage winnowing and traditional air separation device were compared. The results show that, compared with the later, the former resulted in the temperature increasing by 6.2 ℃, the moisture content increasing by 0.3 percentage points, and energy consumption reducing by more than 50%,with the almost similar cigarette quality.

    Reference
    Related
    Cited by
Get Citation

朱国成,魏甲欣,郭宏敏,等.节能型循环风式多级叶丝风选系统的研发与应用[J].食品与机械英文版,2017,33(8):94-97.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 10,2023
  • Published:
Article QR Code