Fatigue Life Analysis and Forecast of Scissors Arms in Scissors Aerial Work Platform
CSTR:
Author:
Affiliation:

(1. Changsha University of Science and Technology, Changsha, Hunan 410114, China; 2. Hunan Sinoboom Co., LTD, Changsha, Hunan 410600, China)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fatigue destruction is the main way for scissors arms to lose effectiveness in the scissors aerial work platform in the actual situation. Through finite element modeling of scissors arms established by ANSYS and static strength analysis, the region of stress concentration of scissors arms has been concluded. Stress condition of different locations in scissors structure has been found by setting monitoring sites. It has been showed that the stress condition of the initial position of scissors arms is the biggest, and the maximum stress location lies in the hinge hole of legs of lifting cylinder at the bottom of the scissors arms, which indicates the driving force of lifting cylinder has a great impact on the intensity of scissors arms. Moreover, the test results are in accord with the stimulation result. Using nominal stress method, fatigue life analysis of scissors arms in scissors aerial work platform in ANSYS, the fatigue life can be predicted, which will provide the reliability design and structure perfection of scissors aerial work platform with proof and evidence. The fact that the fatigue life of scissors arms can be predicted by using nominal stress method and fatigue life curves of scissors arms in scissors aerial work platform, provides proof and evidence for the reliability design and structure optimization of scissors aerial work platform.

    Reference
    Related
    Cited by
Get Citation

潘权,张哲,贺尚红,等.剪叉式高空作业平台剪叉臂疲劳寿命分析及预测[J].食品与机械英文版,2017,33(5):119-124.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 10,2023
  • Published:
Article QR Code