Experimental study on Apricot stone extrusion breaking machine
CSTR:
Author:
Affiliation:

(1. Institute of Agricultural Mechanization Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China;2. Xinjiang Research Center of Equipment for Characteristic Wood's Fruit, Urumqi, Xinjiang 830091, China)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, a pricot stone breaking machine was designed to solve the current problem of low productivity and high rate of broken kernels in apricot stone breaking processing. The structure and stress situation of the machine had been analyzed. Various related factors were analyzed, and three primary factors including feeding speed, interspace of breaking device and rotating speed of active roll were focused on. Moreover, these three factors were selected for orthogonal experiments, using the Star apricot stone as material. The results showed that the clearance of breaking device had a significant effect on stone breaking efficiency, while the speeds of feeding and rotating of active roll were no obvious influance. The breaking rate and entire kernel rate of the material reached to 99.65% and 96.87%, respectively, when the feeding speed was 400 kg/h, and the rotating speed of active roll was 400 r/min, using the 9 mm interspace of breaking device. This breaking effect was better than those in the other cases. Furthermore, other kinds of apricot stones were tested using this mechain at the same feeding and rotating speeds, leaving the interspaces of breaking device at 2 mm less than the thickness apricot stone, and it was found that their breaking and kernel rates could be up to more than 98% and 95%, repectively.

    Reference
    Related
    Cited by
Get Citation

朱占江,李忠新,杨莉玲,等.挤压式杏核破壳机试验研究[J].食品与机械英文版,2016,32(10):77-80.

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 09,2023
  • Published:
Article QR Code