Abstract:In the industrial processing of beer, pasteurization is necessary the to guarantee its biological stability. The superheat phase (the last part of heating phase) was numerically simulated, in which the slowest heating zone (SHZ) inside the bottle was determined, and then the influence of three parameters on the uniformity of temperature distribution inside the bottled beer during pasteurization, i.e. the temperature of spray water, the turbulent intensity of spray water at the spray nozzles and the running velocity of bottles were analyzed using L9 (34) orthogonal experiments. The results indicated that SHZ lay at the bottom of the bottle at the beginning and then moved upward without exceeding 1/2 of filling height of beer. Besides, after heating for 7 min, the temperature and the turbulent intensity of spray water at the spray nozzles affected the uniformity of temperature distribution inside the bottled beer obviously, while the running velocity of bottle had no significant effect on it. Our results showed that the probable optimum condition was 65 ℃ temperature of spray water and 3% turbulent intensity of it at the spray nozzles as well as 3 mm/s running velocity of bottle.