基于改进 Faster R-CNN 的冬枣新鲜度判别
CSTR:
作者:
作者单位:

1.湖北工业大学计算机学院,湖北 武汉 430068;2.华南理工大学食品科学与工程学院,广东 广州 510640;3.广东石油化工学院生物与食品工程学院,广东 茂名 525000

作者简介:

通讯作者:

朱良(1975—),男,华南理工大学副教授,硕士生导师,博士。E-mail:zhuliang@scut.edu.cn

中图分类号:

基金项目:

广东省重点领域研发计划项目(编号:2019B020222001);茂名市科技计划项目(编号:2023S017082)


Freshness determination of winter jujube based on improved Faster R-CNN
Author:
Affiliation:

1.School of Computer Science, Hubei University of Technology, Wuhan, Hubei 430068, China;2.School of Food Science and Engineering, South China University of Technology University, Guangzhou, Guangdong 510640, China;3.College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对冬枣新鲜度判别需求,提出一种基于深度学习的判别方法,将冬枣分为5个新鲜度阶段,旨在提高判别准确性并减少光线反射影响。方法 提出了一种结合高效ResNet、注意力机制与Faster R-CNN的冬枣新鲜度判别方法。利用ResNet对图像进行卷积处理,提取全局特征图;通过通道注意力模块强化关键特征,结合特征金字塔网络(FPN)提取多尺度信息。Faster R-CNN从中选取候选区域,经过ROI池化后输入全连接层,通过多角度损失函数优化模型性能。通过硬度、电导率、维生素C和多酚含量等理化指标验证模型效果。结果 改进的Faster R-CNN模型在新鲜度判别上的准确率达到98.60%。结论 改进的Faster R-CNN模型在小规模样本下的表现优于现有方法。

    Abstract:

    Objective To propose a deep learning-based method for the freshness determination of winter jujube by dividing the fruit into five freshness stages, aiming to improve determination accuracy and reduce the influence of light reflection.Methods In this study, a freshness determination method is proposed for winter jujube by combining an efficient ResNet, an attention mechanism, and Faster R-CNN. First, ResNet is used for convolutional processing on the image to extract the global feature map. Next, key features are enhanced through a channel attention module, and multi-scale features are extracted using a feature pyramid network (FPN). Then, Faster R-CNN selects candidate regions from the features, followed by region of interest (ROI) pooling before inputting to fully connected layers. Therefore, the model performance is optimized through a multi-angle loss function. The model’s effectiveness is validated using physicochemical indicators such as hardness, conductivity, as well as vitamin C (VC) and polyphenol content.Results In freshness determination, the improved Faster R-CNN model achieves an accuracy of 98.60%.Conclusion The improved Faster R-CNN model outperforms existing methods in small-scale samples.

    参考文献
    相似文献
    引证文献
引用本文

戴浩天,刘文联,朱美燕,等.基于改进 Faster R-CNN 的冬枣新鲜度判别[J].食品与机械,2026,42(1):93-100.
DAI Haotian, LIU Wenlian, ZHU Meiyan, et al. Freshness determination of winter jujube based on improved Faster R-CNN[J]. Food & Machinery,2026,42(1):93-100.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-16
  • 最后修改日期:2025-08-11
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。