人参果损伤的高光谱无损检测方法研究
CSTR:
作者:
作者单位:

1.云南农业大学理学院,云南 昆明 650201;2.云南农业大学食品科学技术学院,云南 昆明 650201

作者简介:

通讯作者:

周兵(1975—),男,云南农业大学教授,博士。E-mail: bingzhoukm@126.com

中图分类号:

基金项目:

云南省重大科技专项计划项目(编号:202302AE09002003)


A hyperspectral non-destructive method for detecting damage of Solanum muricatum fruits
Author:
Affiliation:

1.College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China;2.College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 实现对人参果损伤程度的准确、无损检测。方法 通过自由落体碰撞方式制备不同损伤级别的人参果样本,采集各类样本高光谱数据,分析4种不同预处理方法对随机森林(RF)分类模型的影响。采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)对预处理后的光谱数据进行特征波长提取,构建偏最小二乘法判别分析(PLS-DA)、支持向量机(SVM)和RF 3种机器学习分类模型并进行对比分析。利用贝叶斯(BO)算法对最优模型的超参数进行寻优。结果 标准正态变换(SNV)预处理后模型分级效果最佳,预测集准确率达到78.89%;特征波长提取后,分级准确率有所提高,SNV-CARS-RF模型表现出了最佳分级性能,预测集准确率为92.78%;最后经BO算法对SNV-CARS-RF模型的4个超参数完成优化,模型准确率提升至100%。结论 使用高光谱技术结合机器学习算法能够实现对不同损伤级别的人参果准确检测。

    Abstract:

    Objective To establish a non-destructive method for precise identification of mechanical damage in Solanum muricatum fruits.Methods The S. muricatum fruit samples exhibiting varying degrees of damage are induced by free-fall collisions, and then the hyperspectral data of each sample are collected. The effects of four preprocessing methods on the performance of the random forest (RF) classification model are evaluated. The sequential projection algorithm (SPA) and competitive adaptive reweighting algorithm (CARS) are used to extract the feature wavelengths of the preprocessed spectral data. Three machine learning-based classification models-partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest-are constructed and compared. The Bayesian optimization (BO) algorithm is employed to optimize the hyperparameters of the best-performing model.Results The model utilizing standard normal variate (SNV) preprocessing achieves the highest classification accuracy, which reaches 78.89%. Further enhancement of classification accuracy is observed through feature wavelength extraction, and the SNV-CARS-RF model attains the best performance, with the accuracy reaching 92.78% on the prediction set. Finally, the BO algorithm is used to optimize four hyperparameters of the SNV-CARS-RF model, increasing the prediction accuracy to 100%.Conclusion The integration of hyperspectral technology with machine learning enables the accurate detection of varying degrees of damage in S. muricatum fruits.

    参考文献
    相似文献
    引证文献
引用本文

柏孝燚,伍金凤,张晋恒,等.人参果损伤的高光谱无损检测方法研究[J].食品与机械,2026,42(1):86-92.
BAI Xiaoyi, WU Jinfeng, ZHANG Jinheng, et al. A hyperspectral non-destructive method for detecting damage of Solanum muricatum fruits[J]. Food & Machinery,2026,42(1):86-92.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-08-22
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。