基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法
CSTR:
作者:
作者单位:

1.广西中烟工业有限责任公司柳州卷烟厂,广西 柳州 545006;2.扬州市天宝自动化工程有限公司,江苏 扬州 225800

作者简介:

通讯作者:

唐芳丽(1997—),女,广西中烟工业有限责任公司柳州卷烟厂工程师。E-mail:13321727467@163.com

中图分类号:

基金项目:

广西壮族自治区工信厅技术创新项目(编号:2009016677)


Visual positioning method for AGV tray holes based on improved YOLOv5s
Author:
Affiliation:

1.Guangxi Zhongyan Industrial Co., Ltd., Liuzhou Carette Factory Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi 545006, China;2.Yangzhou Tianbao Automation Co., Ltd., Yangzhou, Jiangsu 225800, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 自动导引运输车在搬运过程中,需定位的托盘孔位中存在的细小、形变、低对比度孔位的视觉定位不准的问题。因此,提出一种基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法。方法 结合ShuffleNetV2的通道混洗操作改进和CBAM注意力机制改进,对基本YOLOv5s框架进行改进,使其聚焦于形变关键区域中亚像素级边界模糊的孔位区域;基于SloU损失函数关注微小孔位,并计算托盘孔位在相机坐标系下的空间三维坐标,得到相机坐标系到孔位区域坐标系的变换关系,采用改进的YOLOv5s框架输出AGV机械臂坐标系下的托盘孔位三维坐标。结果 试验方法可有效捕捉亚像素级定位精度边界,绝对误差<0.03 cm,相对误差<0.83%;F1分数、mAP指标分别为95.2%、94.8%;浮点运算次数、参数量和模型体积分别为4.8 G、2.6 M、4.28 MB。结论 试验方法有效解决了需定位托盘孔位中存在的细小、形变、低对比度孔位的视觉定位难题,提升了自动导引运输车托盘搬运效率。

    Abstract:

    Objective In the handling process of the automatic guided vehicle (AGV), accurate visual positioning of tray holes, particularly those that are small, distorted, and of low contrast, poses a significant challenge. Therefore, a visual positioning method for tray holes in AGVs based on improved YOLOv5s is proposed.Methods Combining the channel shuffling operation improvement of ShuffleNetV2 and the CBAM attention mechanism improvement, the basic YOLOv5s framework is improved to focus on the sub-pixel level boundary blurred hole position areas in the deformation key region. Based on the SIoU loss function, attention is paid to the micro hole positions, and the spatial three-dimensional coordinates of the tray hole positions in the camera coordinate system are calculated to obtain the transformation relationship from the camera coordinate system to the hole position area coordinate system. The improved YOLOv5s framework is utilized to output the three-dimensional coordinates of the tray hole positions in the AGV robotic arm coordinate system.Results The experimental results show that the experimental method can effectively capture sub-pixel level positioning accuracy boundaries, with an absolute error of less than 0.03 cm and a relative error of less than 0.83%. The F1 score and mAP index are 95.2% and 94.8%, respectively. The number of floating-point operations, parameter count, and model volume are 4.8 G, 2.6 M and 4.28 MB, respectively.Conclusion The experimental method effectively solves the visual positioning problem of small, deformed, and low contrast holes in the tray holes that need to be positioned, and improves the efficiency of AGV tray handling.

    参考文献
    相似文献
    引证文献
引用本文

崔升,唐芳丽,郑亮宇,等.基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法[J].食品与机械,2026,42(1):79-85.
CUI Sheng, TANG Fangli, ZHENG Liangyu, et al. Visual positioning method for AGV tray holes based on improved YOLOv5s[J]. Food & Machinery,2026,42(1):79-85.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-11
  • 最后修改日期:2025-11-23
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。