基于改进深度学习的食品外包装缺陷在线智能检测方法
CSTR:
作者:
作者单位:

1.安阳职业技术学院,河南 安阳 455000;2.郑州轻工业大学,河南 郑州 450002;3.河南农业大学,河南 郑州 450046

作者简介:

通讯作者:

申高(1986—),男,安阳职业技术学院讲师,硕士。E-mail:mbngfs@sina.com

中图分类号:

基金项目:

中国高等教育学会高等教育科学研究规划重点课题(编号:22GDZY0311)


Intelligent online detection method for food packaging defects based on improved deep learning
Author:
Affiliation:

1.Anyang Vocational and Technical College, Anyang, Henan 455000, China;2.Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China;3.Henan Agricultural University, Zhengzhou, Henan 450046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对目前食品生产线外包装缺陷检测中人工检测效率低、漏检误检率高,以及传统机器视觉算法对复杂纹理包装、微小缺陷识别能力不足的问题,提出一种兼顾检测精度与速度的智能化检测方法。方法 以Swin Transformer为核心特征提取模块,利用其对图像全局信息的建模能力和多尺度特征融合优势,精准捕捉外包装表面的微小褶皱、印刷偏移等缺陷特征。同时引入YOLOv12的快速检测框架,通过优化颈部网络与损失函数,实现缺陷区域的快速定位与分类,形成高精度特征提取—快速目标检测的一体化检测流程。结果 该方法对常见缺陷类型的平均检测精度均值>96.50%,较优化前方法提升超过10.00%。单张图像检测耗时<10 ms,满足生产线每秒30帧的实时检测要求。此外,在不同食品检测中,该方法仍保持稳定性能,鲁棒性显著优于对比方法。结论 通过融合Swin Transformer特征提取优势与YOLOv12快速检测能力,解决了食品外包装缺陷检测中精度与速度难以兼顾的核心问题。

    Abstract:

    Objective To propose an intelligent detection method that balances detection accuracy and speed for the problems of low manual detection efficiency, high missed and false detection rates, and insufficient recognition ability of traditional machine vision algorithms for complex texture packaging and small defects in packaging defect detection at current food production lines.Methods Using Swin Transformer as the core feature extraction module, this study utilizes its modeling ability for global image information and multi-scale feature fusion advantages to accurately capture defect features, such as small wrinkles and printing offsets on the packaging surface. Simultaneously, the YOLOv12 fast detection framework is introduced, which optimizes the neck network and loss function to achieve fast localization and classification of defect areas, forming an integrated detection process of high-precision feature extraction and fast object detection.Results The average detection accuracy of this method for common defect types is higher than 96.50%, improving by over 10.00% compared to the method before optimization. Single image detection takes less than 10 ms, meeting the real-time detection requirement of 30 frames per second for the production line. Additionally, this method still maintains stable performance in tests for different foods, demonstrating significantly better robustness than the comparative method.Conclusion By integrating the advantages of Swin Transformer feature extraction with the fast detection capability of YOLOv12, this study solves the core problem of balancing accuracy and speed in food packaging defect detection.

    参考文献
    相似文献
    引证文献
引用本文

申高,王子剑,王晓峰,等.基于改进深度学习的食品外包装缺陷在线智能检测方法[J].食品与机械,2025,41(12):236-244.
SHEN Gao, WANG Zijian, WANG Xiaofeng, et al. Intelligent online detection method for food packaging defects based on improved deep learning[J]. Food & Machinery,2025,41(12):236-244.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-12
  • 最后修改日期:2025-11-26
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。