基于改进LSSVM和YOLOv12的番茄加工生产线品质检测方法
CSTR:
作者:
作者单位:

1.重庆科创职业学院,重庆 402160;2.重庆理工大学,重庆 401135;3.四川农业大学,四川 雅安 625014

作者简介:

通讯作者:

刘军(1985—),男,重庆科创职业学院副教授。E-mail:bfsfgha@126.com

中图分类号:

基金项目:

重庆市教育评估研究会重大课题(编号:PJY2023008);重庆市教委科学技术研究计划青年项目(编号:KJQN202505414,KJQN202405415,KJQN202505415);重庆市永川区科学技术研究项目(编号:2025yc-cxfz10080)


Quality inspection method for tomato processing production line based on improved LSSVM and YOLOv12
Author:
Affiliation:

1.Chongqing College of Science and Creation, Chongqing 402160, China;2.Chongqing University of Technology, Chongqing 401135, China;3.Sichuan Agricultural University, Ya'an, Sichuan 625014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高自动化生产线中番茄品质检测的准确性与效率,解决传统检测依赖人工、精度低、效率差的问题。方法 基于番茄自动化生产线品质检测系统,构建高光谱与机器视觉融合的内外品质检测系统。高光谱检测数据经预处理后,输入改进最小二乘支持向量机LSSVM模型检测番茄可溶性固形物和硬度,完成内部品质检测。机器视觉采集数据预处理后,输入改进YOLOv12模型检测外部缺陷,并计算番茄尺寸与果形指数,实现外部品质检测。并通过试验验证方法的优越性。结果 内部品质检测方法对可溶性固形物、硬度预测决定系数(R2)分别为0.965和0.975,均方根误差(RMSE)分别为0.082 °Bx和0.061 N。改进YOLOv12模型缺陷检测平均精度均值为99.20%,检测速度>100帧/s,综合性能优于单一检测和现有方法。结论 该融合检测系统可实现番茄内外品质同步、无损、高效检测,满足生产线需求。

    Abstract:

    Objective To improve the accuracy and efficiency of tomato quality inspection in automated production lines, and solve the problems of traditional inspection, such as reliance on manual labor, low precision, and poor efficiency.Methods Based on the quality inspection system of the tomato automated production line, an integrated internal and external quality inspection system is developed by combining hyperspectral imaging and machine vision technologies. After preprocessing the hyperspectral detection data, an improved least squares support vector machine (LSSVM) model is employed to detect the soluble solids content and hardness of tomatoes, thereby completing internal quality inspection. For external quality inspection, the collected machine vision data are preprocessed, and an improved YOLOv12 model is utilized to detect external defects. Additionally, the size and fruit shape index of tomatoes are calculated. The superiority of the method is validated through experimental testing.Results The internal quality inspection method demonstrates high predictive accuracy, with determination coefficients (R2) of 0.965 for total soluble solids and 0.975 for hardness, and root mean square errors (RMSE) of 0.082 °Bx and 0.061 N, respectively. The improved YOLOv12 model achieves an average defect detection accuracy of 99.20% and a detection speed exceeding 100 frames/s. The overall performance of this integrated system is superior to that of single-detection approaches and existing methods.Conclusion This integrated detection system enables synchronous, non-destructive, and efficient detection of both internal and external quality of tomatoes, effectively meeting the requirements of automated production lines.

    参考文献
    相似文献
    引证文献
引用本文

刘军,曹小平,王瑞琴,等.基于改进LSSVM和YOLOv12的番茄加工生产线品质检测方法[J].食品与机械,2025,41(12):91-98.
LIU Jun, CAO Xiaoping, WANG Ruiqin, et al. Quality inspection method for tomato processing production line based on improved LSSVM and YOLOv12[J]. Food & Machinery,2025,41(12):91-98.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-11
  • 最后修改日期:2025-11-09
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。