基于光谱图像融合技术的蓝莓品质在线评价系统设计与应用
CSTR:
作者:
作者单位:

1.湖南农业大学食品科学技术学院,湖南 长沙 410128;2.云南省澄江市乡村振兴发展中心,云南 玉溪 653100

作者简介:

通讯作者:

范伟 (1983—),男,湖南农业大学讲师,博士。E-mail:weifan@hunau.edu.cn

中图分类号:

基金项目:

国家自然科学基金项目(编号:32360579)


Design and application of an online evaluation system for blueberry quality based on spectral image fusion technology
Author:
Affiliation:

1.School of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China;2.Center for Rural Revitalization Development of Chengjiang City, Yuxi, Yunnan 653100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 实现蓝莓品质的精准无损检测及分选。方法 设计了一种基于近红外光谱与可见光图像融合的蓝莓品质在线评价系统。该系统由果盒链式输送模块、线阵式图像检测模块、近红外光谱检测模块及控制系统组成。采用近红外光谱检测模块设计了漫反射式光路,通过S-G卷积平滑与二阶导数联用预处理,结合连续投影算法(SPA)提取特征变量,建立偏最小二乘回归(PLSR)模型预测蓝莓可溶性固形物含量。结果 蓝莓个体果径的判别相对误差平均值为0.093,果径均匀度判别准确率达91.85%。蓝莓优等品、一等品和二等品的预测相关系数分别为0.843 4,0.782 2,0.723 7,预测均方根误差分别为0.831 6,0.951 0,1.070 5。结论 综合蓝莓外部及内部品质的决策树品质评价模型综合评价准确率达89.55%。

    Abstract:

    Objective To achieve precise non-destructive detection and sorting of blueberry quality.Methods An online evaluation system for blueberry quality based on near-infrared spectroscopy and visible light image fusion is designed. The system consists of a fruit box chain conveyor module, a linear array image detection module, a near-infrared spectroscopy detection module, and a control system. A diffuse reflection optical path is designed by the near-infrared spectroscopy detection module, and a partial least squares regression model is established to predict the soluble solids content in blueberries through S-G convolution smoothing, second-order derivative connection preprocessing, and sequential projection algorithm for feature variable extraction.Results The developed system shows an average relative error of 0.093 in determining the individual diameter of blueberries and the accuracy of 91.85% in measuring fruit diameter uniformity. The predicted correlation coefficients for superior, first-class, and second-class blueberries are 0.843 4, 0.782 2, and 0.723 7, respectively, with predicted root mean square errors of 0.831 6, 0.951 0, and 1.070 5, respectively.Conclusion The overall evaluation accuracy of the decision tree quality evaluation model for blueberries, integrating both external and internal quality, reaches 89.55%.

    参考文献
    相似文献
    引证文献
引用本文

荀拾虎,咸嘉玮,王微娜,等.基于光谱图像融合技术的蓝莓品质在线评价系统设计与应用[J].食品与机械,2025,41(12):82-90.
XUN Shihu, XIAN Jiawei, WANG Weina, et al. Design and application of an online evaluation system for blueberry quality based on spectral image fusion technology[J]. Food & Machinery,2025,41(12):82-90.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-27
  • 最后修改日期:2025-08-08
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。