机器人在酒醅发酵车间地缸区域的路径规划方法
CSTR:
作者:
作者单位:

1.太原理工大学电气与动力工程学院,山西 太原 030024;2.山西万立科技有限公司,山西 太原 030000

作者简介:

通讯作者:

田建艳(1966—),女,太原理工大学教授,博士。E-mail:tut_tianjy@163.com

中图分类号:

基金项目:

山西省重点研发计划项目(编号:202102150401006)


Path planning method for robots in the ground-pot areas of fermentation workshops
Author:
Affiliation:

1.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China;2.Shanxi Wanli Technology Co., Ltd., Taiyuan, Shanxi 030000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 解决清香型白酒发酵车间内地缸区域的路径规划问题。方法 提出一种C-EAFO-YBWC的机器人路径规划方法。首先,通过伽马校正和非锐化掩膜增强图像,结合自适应FAST阈值优化ORB特征点提取,保证ORB-SALM2算法在复杂光照下的定位精度;然后,基于YOLOv10n引入BiFPN和CA注意力机制优化网络并结合WIoU,用于检测地缸获取路径点;最后,结合机器人自定位和地缸检测,通过坐标变换将路径点与机器人统一至同一坐标系,指导机器人运动。结果 在EuRoC数据集选取的4个测试序列中,RMSE分别降低了2.60%,43.26%,12.72%,30.10%,地缸数据集测试中,mAP@0.5提高了1.1个百分点,Params和FLOPs分别减少了8.33%,2.32%。结论 改进的EAF_ORB-SLAM2和YOLOv10n_BWC算法有效保证了路径规划算法的有效性。

    Abstract:

    Objective To address the path planning challenges for robots in the ground-pot areas of light-flavor Baijiu fermentation workshops.Methods A robotic path planning method, named C-EAFO-YBWC, is proposed. First, gamma correction and unsharp masking are used to enhance image quality, combined with the adaptive FAST threshold to improve ORB feature point extraction, ensuring the localization accuracy of the ORB-SLAM2 algorithm under complex lighting. Second, BiFPN and Coordinate Attention (CA) mechanisms are integrated into YOLOv10n and optimized with WIoU to detect fermentation pots and generate path points. Finally, by combining robot self-localization and ground-pot detection, the path points are transformed into the robot's coordinate system to guide its motion.Results In the four test sequences selected from the EuRoC dataset, the RMSE is reduced by 2.60%, 43.26%, 12.72%, and 30.10%, respectively. In tests using a ground-pot dataset, mAP@0.5 improves by 1.1 percentage points, while Params and FLOPs are reduced by 8.33% and 2.32%, respectively.Conclusion The proposed EAF_ORB-SLAM2 and YOLOv10n_BWC algorithms effectively ensure the validity of path planning.

    参考文献
    相似文献
    引证文献
引用本文

郭守杰,田建艳,成龙,等.机器人在酒醅发酵车间地缸区域的路径规划方法[J].食品与机械,2025,41(12):73-81.
GUO Shoujie, TIAN Jianyan, CHENG Long, et al. Path planning method for robots in the ground-pot areas of fermentation workshops[J]. Food & Machinery,2025,41(12):73-81.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-26
  • 最后修改日期:2025-08-11
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。