基于近红外光谱和FOA-RF的猪肉新鲜度检测
CSTR:
作者:
作者单位:

1.河南工业职业技术学院,河南 南阳 473000;2.河南省柔性制造工程研究中心,河南 南阳 473000;3.郑州大学,河南 郑州 450001

作者简介:

通讯作者:

张丽(1979—),女,河南工业职业技术学院副教授,硕士。E-mail:bkgfs78@126.com

中图分类号:

基金项目:

河南省科技攻关项目(编号:252102210224,252102210008)


Pork freshness monitoring based on near-infrared spectroscopy and random forest improved by fruit fly optimization algorithm
Author:
Affiliation:

1.Henan Polytechnic Institute, Nanyang, Henan 473000, China;2.Henan Engineering Research Center of Flexible Manufacturing, Nanyang, Henan 473000, China;3.Zhengzhou University, Zhengzhou, Henan 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 实现猪肉新鲜度的快速、无损且高精度检测,解决传统检测方法效率低、破坏性强及单一模型预测精度不足的问题。方法 提出一种近红外光谱(NIRS)结合果蝇优化算法(FOA)改进随机森林(RF)的猪肉新鲜度检测模型。以总挥发性盐基氮(TVB-N)质量分数作为猪肉新鲜度评价指标,首先采集不同贮藏阶段猪肉样品的近红外光谱数据(扫描范围1 000~1 800 nm),通过多元散射校正(MSC)与一阶导数结合的预处理方法消除光谱噪声与基线漂移;采用FOA优化RF的关键超参数(决策树数量、最小叶子节点样本数、最大特征数),构建果蝇优化算法改进随机森林(FOA-RF)预测模型。结果 在各类预测模型中,FOA-RF模型对猪肉TVB-N质量分数的估算精度最高。该模型在预测集上的均方根误差(RMSEP)仅为1.582 mg/100 g;同时,其预测集相关系数(Rp)为0.978,决定系数(Rp2)为0.956,残差预测偏差(RPDp)也高达4.723,显著优于其他对比模型。相比之下,传统偏最小二乘回归(PLSR)、未优化随机森林以及网格搜索优化随机森林(GS-RF)等模型的综合预测性能均不及FOA-RF模型。结论 该方法高效、精准,可满足肉类工业现场快速检测需求。

    Abstract:

    Objective To achieve rapid, non-destructive, and high-precision monitoring of pork freshness, addressing the low efficiency, high destructiveness, and insufficient prediction accuracy of single models in conventional monitoring.Methods A pork freshness monitoring model was proposed based on near-infrared spectroscopy (NIRS) combined with random forest (RF) improved by the fruit fly optimization algorithm (FOA). With the total volatile basic nitrogen (TVB-N) content as the freshness indicator, near-infrared spectral data of pork samples at different storage stages are collected (scanning range: 1 000~1 800 nm). Spectral noise and baseline drift are eliminated via a preprocessing method combining multiplicative scatter correction (MSC) and first-derivative transformation. Then, FOA is employed to optimize key hyperparameters (number of decision trees, minimum leaf node sample size, and maximum number of features) of RF to construct the FOA-RF model.Results Among all the prediction models evaluated, the FOA-RF model demonstrates the highest accuracy for predicting pork TVB-N content. The preprocessing method combining MSC and first-derivative transformation effectively enhances the quality of the spectral data. The FOA-RF model achieves a root mean square error of prediction (RMSEP) of only 1.582 mg/100 g, a correlation coefficient of prediction (Rp) of 0.978, a coefficient of determination of prediction (Rp2) as high as 0.956, and a residual prediction deviation of prediction (RPDp) of 4.723, significantly outperforming the other comparative models. The overall predictive performance of partial least squares regression (PLSR), the un-optimized RF model, and the grid search-optimized random forest (GS-RF) model is inferior to that of the FOA-RF model.Conclusion The method proposed in this study provides an efficient and accurate new approach for non-destructive monitoring of pork freshness, meeting the demand for rapid testing in the meat industry.

    参考文献
    相似文献
    引证文献
引用本文

张丽,李志辉,马明星.基于近红外光谱和FOA-RF的猪肉新鲜度检测[J].食品与机械,2025,41(12):51-58.
ZHANG Li, LI Zhihui, MA Mingxing. Pork freshness monitoring based on near-infrared spectroscopy and random forest improved by fruit fly optimization algorithm[J]. Food & Machinery,2025,41(12):51-58.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-01
  • 最后修改日期:2025-11-22
  • 录用日期:
  • 在线发布日期: 2026-01-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。