基于EISW-YOLOv8n的预制薯条外观缺陷检测方法
CSTR:
作者:
作者单位:

1.天津市轻工与食品工程机械装备集成设计与在线监控重点实验室,天津 300457;2.天津科技大学机械工程学院,天津 300457

作者简介:

通讯作者:

王永强(1965—),男,天津科技大学教授,硕士。E-mail: wangyq@tust.edu.cn

中图分类号:

基金项目:

天津市自然科学基金—青年项目(编号:23JCQNJC01170)


An appearance defect detection method for pre-fried potato chips based on EISW-YOLOv8n
Author:
Affiliation:

1.Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry and Food Machinery and Equipment, Tianjin 300457, China;2.College of Mechanical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 解决传统预制薯条生产中残次品人工检测速度慢、效率低,易漏检、误检的问题,提高缺陷残次品的识别准确度和速度,保证安全生产。方法 提出了一种基于YOLOv8n改进的识别算法EISW-YOLOv8n。通过在网络中引入EMCA通道注意力机制,突出重要通道信息;为了提高模型对特征的提取能力以及捕获特征中的长距离依赖关系的能力,在C2f模块中引入由SWC卷积优化过的iRMBS模块;引入WIOU损失函数,增强预测框的定位精度以及模型的收敛速度。结果 提出的模型对于预制薯条缺陷检测的平均精度达到94.3%。与原始YOLOv8n模型以及常见的目标检测算法相比,该网络表现出了优越的性能。结论 EISW-YOLOv8n能够满足识别预制薯条的表面缺陷的需求。

    Abstract:

    Objective To address the low speed and efficiency as well as missed and false detection in manual inspection of defective products in pre-fried potato chip production, enhance the accuracy and speed of product defect identification, and ensure safe production.Methods An improved recognition algorithm, EISW-YOLOv8n, based on YOLOv8n is proposed. Firstly, the efficient multiscale channel attention (EMCA) mechanism is introduced into the network to highlight important channel information. Secondly, to improve the model ability to extract features and capture long-distance dependencies within features, the iRMBS module, optimized by SWC convolution, is introduced into the C2f module. Finally, the loss function WIOU is introduced to enhance the localization accuracy of the prediction box and the convergence speed of the model.Results The proposed model achieves the average precision of 94.3% for defect detection in pre-fried potato chips. Compared with the original YOLOv8n model and common object detection algorithms, this network demonstrates superior performance.Conclusion EISW-YOLOv8n can meet the requirements for identifying appearance defects in pre-fried potato chips.

    参考文献
    相似文献
    引证文献
引用本文

李健佳,王永强,周聪玲,等.基于EISW-YOLOv8n的预制薯条外观缺陷检测方法[J].食品与机械,2025,41(11):84-90.
LI Jianjia, WANG Yongqiang, ZHOU Congling, et al. An appearance defect detection method for pre-fried potato chips based on EISW-YOLOv8n[J]. Food & Machinery,2025,41(11):84-90.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-02
  • 最后修改日期:2025-08-19
  • 录用日期:
  • 在线发布日期: 2025-12-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。