基于改进YOLOv8n的猪胴体分割特征检测方法
CSTR:
作者:
作者单位:

1.佳木斯大学机械工程学院,黑龙江 佳木斯 154007;2.嘉兴大学机械工程学院(机器人工程学院),浙江 嘉兴 314001

作者简介:

通讯作者:

邓文斌(1985—),男,嘉兴大学讲师,博士。E-mail: wbdeng@zjxu.edu.cn

中图分类号:

基金项目:

浙江省“尖兵领雁+X”研发攻关计划(编号:2024C04028);浙江省教育厅一般科研项目(编号:Y202455539);平湖市科技计划项目(编号:产业发展攻关专项202505)


Segmentation feature detection method of pig carcass based on improved YOLOv8n
Author:
Affiliation:

1.College of Mechanical Engineering, Jiamusi University, Jiamusi, Heilongjiang 154007, China;2.College of Mechanical Engineering (Robot Engineering), Jiaxing University, Jiaxing, Zhejiang 314001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 实现对猪胴体不易区分、相对较小的分割特征的准确、高效检测。方法 通过在Backbone层中引入GhostConv模块和C3Ghost模块替代原有YOLOv8n特征提取网络中的普通卷积和C2模块,以减少计算量,降低模型复杂度;将SPPF模块替换为SPPELAN模块,使模型能更有效应对多尺度和小目标特征;最后在3个检测头前面引入无参数注意力SimAM,提高复杂环境下对下猪胴体小目标特征的识别能力。结果 改进YOLOv8n模型在自制数据集上的mAP50为97.3%,相较原始YOLOv8n提高了5.3%的精度。改进模型的参数量Params和计算量FLOPs分别为1.5 M和4.9 G,模型大小为3.5 MB,仅为YOLOv8n的50.0%,60.5%,55.6%。模型推理速度为120.2帧/s,提高了20.7帧/s。结论 改进YOLOv8n模型在检测精度与轻量化方面具有优势,可以有效识别猪胴体的小目标分割特征。

    Abstract:

    Objective To achieve accurate and efficient detection of pig carcasses' segmentation features, which are hard to distinguish and relatively small.Methods The Ghost Conv module and C3Ghost module are introduced into the Backbone layer to replace the ordinary convolution and C2 modules in the original YOLOv8n feature extraction network, aiming to reduce the computational amount and model complexity. The SPPF module is replaced with the SPPELAN module, so that the model can more effectively cope with multi-scale and small target features. Finally, parameter-free attention SimAM is introduced in front of the three detection heads to improve the ability to recognize the small target features of the lower pig carcass in a complex environment.Results The mAP50 of the improved YOLOv8n model on the self-made dataset is 97.3%, which is 5.3% higher than that of the original YOLOv8n. The parameter Params, computational FLOPs, and the model size of the improved model are 1.5 M, 4.9 G, and 3.5 MB, respectively, which are only 50.0%, 60.5% and 55.6% of YOLOv8n. The FPS of the model inference speed is 120.2 frames/s, which is increased by 20.7 frames/s.Conclusion The improved YOLOv8n model has advantages in detection accuracy and lightweight, and can effectively identify the small target segmentation features of pig carcasses.

    参考文献
    相似文献
    引证文献
引用本文

刘春山,李志昂,邓文斌,等.基于改进YOLOv8n的猪胴体分割特征检测方法[J].食品与机械,2025,41(11):76-83.
LIU Chunshan, LI Zhiang, DENG Wenbin, et al. Segmentation feature detection method of pig carcass based on improved YOLOv8n[J]. Food & Machinery,2025,41(11):76-83.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-06
  • 最后修改日期:2025-07-22
  • 录用日期:
  • 在线发布日期: 2025-12-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。