基于多目标和AFSMC的食品智能化生产机器人轨迹优化和跟踪方法研究
CSTR:
作者:
作者单位:

1.平顶山职业技术学院,河南 平顶山 467000;2.河南理工大学,河南 焦作 454003;3.浙江经济职业技术学院,浙江 杭州 310018;4.浙江农林大学,浙江 杭州 311300

作者简介:

通讯作者:

叶琳琳(1985—),女,平顶山职业技术学院讲师,硕士。E-mail:wuymeim@sohu.com

中图分类号:

基金项目:

河南省软科学研究计划项目(编号:192400410158);教育部高等学校教改教研课题项目(编号:JZW2024154)


Trajectory optimization and tracking method for intelligent food production robots based on multi-objective and AFSMC
Author:
Affiliation:

1.Pingdingshan Vocational and Technical College, Pingdingshan, Henan 467000, China;2.Henan Polytechnic University, Jiaozuo, Henan 454003, China;3.Zhejiang Technical Institute of Economics, Hangzhou, Zhejiang 310018, China;4.Zhejiang A & F University, Hangzhou, Zhejiang 311300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 进一步提高食品生产的智能化水平,解决现有食品分拣Delta机器人在实际应用中灵活性不足、作业精度欠佳的问题,提升食品生产线的整体效率与产品质量稳定性。方法 在食品智能化生产系统的基础上,提出一种融合多目标轨迹优化与模糊自适应滑膜控制的食品智能化生产机器人轨迹优化和跟踪方法。首先,建立多目标(运行能耗和作业时间)优化模型,通过改进粒子群算法进行求解,生成兼顾效率与能耗的最优运动轨迹。接着,通过模糊自适应控制对优化后的轨迹进行实时跟踪控制,确保机器人在复杂工况下的运动精度。最后,通过搭建食品分拣试验平台,对所提方法的性能进行验证。结果 与传统轨迹控制方法相比,所提方法使机器人运行能耗降幅>3%,单次作业时间缩短>3%,轨迹跟踪误差<0.5 mm,且在面对食品形状差异、传送带速度波动等复杂场景时,仍能保持稳定的作业精度和灵活性。结论 通过多目标轨迹优化与模糊自适应控制的协同应用,所提方法有效解决了现有食品生产机器人灵活性低、精度差的问题,大幅降低了运行能耗并缩短了作业时间。

    Abstract:

    Objective To further enhance the intelligence level of food production, and address the issues of insufficient flexibility and operation accuracy of existing Delta robots for food sorting in applications, thus improving the overall efficiency of food production lines and product quality stability.Methods Based on the intelligent food production system, a trajectory optimization and tracking method for intelligent food production robots is proposed, which integrates multi-objective trajectory optimization and adaptive fuzzy sliding mode control (AFSMC). Firstly, a multi-objective (energy consumption and operation time) optimization model is built. Next, the model is solved through an improved particle swarm algorithm to generate the optimal motion trajectory that balances efficiency and energy consumption. Then, real-time tracking control of the optimized trajectory is performed through fuzzy adaptive control to ensure the motion accuracy of the robot in complex working conditions. Finally, the performance of the proposed method is validated by a food sorting experimental platform.Results Compared with traditional trajectory control methods, the proposed method reduces the energy consumption by >3% and shortens the single operation time by >3%, with a trajectory tracking error <0.5 mm. Additionally, the proposed model can maintain stable operating accuracy and flexibility in complex scenarios, such as different food shapes and conveyor belt speed.Conclusion Through the collaborative application of multi-objective trajectory optimization and fuzzy adaptive control, the proposed method effectively addresses the issues of low flexibility and accuracy of existing food production robots, significantly reducing energy consumption and operation time.

    参考文献
    相似文献
    引证文献
引用本文

叶琳琳,刘兆强,吴云梅,等.基于多目标和AFSMC的食品智能化生产机器人轨迹优化和跟踪方法研究[J].食品与机械,2025,41(11):68-75.
YE Linlin, LIU Zhaoqiang, WU Yunmei, et al. Trajectory optimization and tracking method for intelligent food production robots based on multi-objective and AFSMC[J]. Food & Machinery,2025,41(11):68-75.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-11
  • 最后修改日期:2025-10-29
  • 录用日期:
  • 在线发布日期: 2025-12-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。