基于改进YOLOX和导纳控制的机械臂食品分拣方法
CSTR:
作者:
作者单位:

1.河南职业技术学院,河南 郑州 450046;2.郑州技师学院,河南 郑州 450006;3.郑州大学,河南 郑州 450001

作者简介:

通讯作者:

施利春(1971—),男,河南职业技术学院副教授。E-mail:shilchun@sohu.com

中图分类号:

基金项目:

河南省科学技术厅科技攻关项目(编号:242102211036)


A robotic arm food sorting system based on improved YOLOX and admittance control
Author:
Affiliation:

1.Henan Polytechnic, Zhengzhou, Henan 450046, China;2.Zhengzhou Technician College, Zhengzhou, Henan 450006, China;3.Zhengzhou University, Zhengzhou, Henan 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 为提高机械臂食品分拣系统在分拣任务中的精度和鲁棒性,研究结合机器视觉与力觉的新型分拣方法。方法 在食品分拣系统的基础上,提出一种融合改进YOLOX模型和改进导纳控制的机械臂食品分拣方法。通过引入卷积注意力机制模块(CBAM)聚焦目标特征,采用深度可分离卷积优化网络结构,结合新型主干网络增强YOLOX模型对食品目标的识别定位能力。同时,利用基于改进导纳的主动柔顺控制方法,实现对不同食品的稳定分拣。通过搭建试验平台对所提方法的应用效果进行分析。结果 所提改进YOLOX模型在食品目标检测上准确率提升至99%以上,相较于传统方法提高3%以上,且在多种脆性食品分拣任务中,系统鲁棒性显著增强,分拣成功率提高了5%以上。结论 所提方法有效提升了机械臂食品分拣的精度与鲁棒性,具有良好的应用前景。

    Abstract:

    Objective To improve the accuracy and robustness of the robotic arm food sorting system in sorting tasks, a new sorting method combining machine vision and force sensing is studied.Methods On the basis of the food sorting system, a mechanical arm food sorting method integrating an improved YOLOX model and improved admittance control is proposed. By introducing a convolutional attention mechanism module (CBAM) to focus on target features, adopting a deep separable convolutional optimization network structure, and combining with a new backbone network, the recognition and localization ability of the YOLOX model for food targets is enhanced. Meanwhile, by utilizing an active compliant control method based on improved admittance, stable sorting of different foods can be achieved. An experimental platform is built to evaluate he application effect of the proposed method.Results The proposed improved YOLOX model improves the detection accuracy of food targets to over 99%, which is over 3% higher than that of conventional methods. In addition, the system demonstrates significantly enhanced robustness in various fragile food sorting tasks, with a sorting success rate increasing by over 5%.Conclusion The proposed method effectively improves the accuracy and robustness of robotic arm food sorting, demonstrating promising application prospects.

    参考文献
    相似文献
    引证文献
引用本文

施利春,刘松涛,王松伟,等.基于改进YOLOX和导纳控制的机械臂食品分拣方法[J].食品与机械,2025,41(9):91-98.
SHI Lichun, LIU Songtao, WANG Songwei, et al. A robotic arm food sorting system based on improved YOLOX and admittance control[J]. Food & Machinery,2025,41(9):91-98.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-02
  • 最后修改日期:2025-09-09
  • 录用日期:
  • 在线发布日期: 2025-10-28
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。