融合改进YOLOv11与动态分拣策略的食品自动化分拣系统研究
CSTR:
作者:
作者单位:

1.河南工业职业技术学院,河南 南阳 473000;2.河南水利与环境职业学院,河南 郑州 450011;3.郑州轻工业大学,河南 郑州 450002

作者简介:

通讯作者:

任越美(1984—),女,河南工业职业技术学院副教授,博士。E-mail:jimijimi2023@sina.com

中图分类号:

基金项目:

河南省重点研发与推广专项项目(编号:202102311007);河南省高等学校青年骨干教师资助计划项目(编号:2020GZGG026)


Food automated sorting system integrated with improved YOLOv11 and dynamic sorting strategy
Author:
Affiliation:

1.Henan Polytechnic Institute, Nanyang, Henan 473000, China;2.Henan Vocational College of Water Conservancy and Environment, Zhengzhou, Henan 450011, China;3.Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 解决现有食品分拣系统缺陷漏检率高和分拣效率低等问题。方法 基于视觉检测的食品自动化分拣系统,提出一种融合改进YOLOv11和动态分拣策略用于食品自动化分拣系统。通过改进YOLOv11目标检测模型优化食品缺陷识别和定位能力,结合动态分拣策略实现机器人动态目标分拣。改进模型引入轻量级跨尺度特征融合模块,通过简化结构、强化信息交互来提升网络效率,引入C3k2_Faster_EMA模块的替换C3k2模块,在保持高精度的同时显著提升计算效率,引入Inner_DIoU损失替换CIoU损失,提升检测和定位精度。通过试验对其优越性进行验证。结果 试验方法能够更快速、准确地检测出食品缺陷,实现更优的分拣成功率和效率,能够精准、高效地将不同缺陷食品分拣至对应位置。改进模型在食品缺陷检测中平均精度均值达99.67%,较原始模型提升7.93%,系统推理速度达120 帧/s。在输送速度为100~200 mm/s时,试验方法的分拣成功率>99.00%,平均分拣时间<0.75 s。结论 通过融合深度学习和动态分拣策略,可以显著提升食品分拣的智能化水平与生产效益。

    Abstract:

    Objective To address the high missed detection rate and low sorting efficiency of existing food sorting system.Methods For an automated food sorting system based on visual inspection, a method integrating an improved YOLOv11 model and a dynamic sorting strategy was proposed. The improved YOLOv11 object detection model enhances the ability to identify and locate food defects. Combined with the dynamic sorting strategy, the system achieves dynamic target sorting by the robot. The improved model introduces a lightweight cross-scale feature fusion module, which enhances network efficiency by simplifying the structure and strengthening information exchange. The C3k2 module is replaced by the C3k2_Faster_EMA module, significantly improving computational efficiency while maintaining high accuracy. The Inner_DIoU loss replaces the CIoU loss to enhance detection and localization accuracy. The superiority of this approach was verified by experiments.Results The experimental method can detect food defects faster and more accurately, achieving better sorting success rates and efficiency. It can accurately and efficiently sort different defective foods to their corresponding positions. The improved model achieves an average precision of 99.67% in food defect detection, which is 7.93% higher than the original model, and the system inference speed reaches 120 frames per second. When the conveyor speed is 100~200 mm/s, the sorting success rate of the experimental method exceeds 99.00%, and the average sorting time is less than 0.75 seconds.Conclusion By integrating deep learning and dynamic sorting strategies, the intelligence level and production efficiency of food sorting can be significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

任越美,李垒,张军锋,等.融合改进YOLOv11与动态分拣策略的食品自动化分拣系统研究[J].食品与机械,2025,41(9):82-90.
REN Yuemei, LI Lei, ZHANG Junfeng, et al. Food automated sorting system integrated with improved YOLOv11 and dynamic sorting strategy[J]. Food & Machinery,2025,41(9):82-90.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-21
  • 最后修改日期:2025-07-30
  • 录用日期:
  • 在线发布日期: 2025-10-28
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。