基于改进U-Net 和IWOA-LSSVM的番茄综合品质检测方法研究
CSTR:
作者:
作者单位:

1.河南职业技术学院,河南 郑州 450046;2.开封技师学院,河南 开封 475000;3.郑州大学,河南 郑州 450001

作者简介:

通讯作者:

施利春(1971—),男,河南职业技术学院副教授。E-mail:shilchun@sohu.com

中图分类号:

基金项目:

河南省科学技术厅科技攻关项目(编号:242102211036)


Research on tomato comprehensive quality detection method based on improved U-Net and IWOA-LSSVM
Author:
Affiliation:

1.Henan Polytechnic, Zhengzhou, Henan 450046, China;2.Kaifeng Technician College, Kaifeng, Henan 475000, China;3.Zhengzhou University, Zhengzhou, Henan 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高食品生产中番茄无损检测方法的检测精度和效率。方法 基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。结果 试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。结论 结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。

    Abstract:

    Objective To improve the detection accuracy and efficiency of non-destructive testing methods for tomatoes in food production.Methods Based on an automatic tomato sorting system, a comprehensive quality detection method for tomatoes was proposed, integrating machine vision, a multi-scale residual attention U-Net model, an improved whale optimization algorithm (IWOA), and a least squares support vector machine (LSSVM). Tomato image information was collected using machine vision. Tomato images were segmented using the multi-scale residual attention U-Net model to measure fruit diameter parameters. The parameters of the LSSVM model were optimized using an IWOA with chaotic mapping and an adaptive convergence factor to detect tomato firmness and lycopene content. Verification experiments were conducted.Results The proposed method achieved accurate, rapid, and non-destructive detection of comprehensive tomato quality. For fruit diameter, firmness, and lycopene content detection, the results showed a coefficient of determination (R2)>0.960 0, root mean square error (RMSE)<0.012 5, and average detection time <0.032 s.Conclusion Combining machine vision, deep learning, and intelligent algorithms can achieve accurate, rapid, and non-destructive detection of comprehensive tomato quality.

    参考文献
    相似文献
    引证文献
引用本文

施利春,边可可,王松伟,等.基于改进U-Net 和IWOA-LSSVM的番茄综合品质检测方法研究[J].食品与机械,2025,41(8):109-117.
SHI Lichun, BIAN Keke, WANG Songwei, et al. Research on tomato comprehensive quality detection method based on improved U-Net and IWOA-LSSVM[J]. Food & Machinery,2025,41(8):109-117.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-19
  • 最后修改日期:2025-07-22
  • 录用日期:
  • 在线发布日期: 2025-09-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。