基于改进YOLOv7-tiny的苹果缺陷识别方法
CSTR:
作者:
作者单位:

1.广东省南方技师学院,广东 韶关 512023;2.陕西科技大学,陕西 西安 710021;3.韶关学院,广东 韶关 512005

作者简介:

通讯作者:

李俊(1985—),男,广东省南方技师学院高级工程师,硕士。E-mail:zhnng31@126.com

中图分类号:

基金项目:

陕西省国际科技合作计划重点项目(编号:2020KWZ-015);广东省教育和职业培训课题项目(编号:KT2023019)


An apple defect identification method based on improved YOLOv7-tiny
Author:
Affiliation:

1.Guangdong Province Nanfang Technician College, Shaoguan, Guangdong 512023, China;2.Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China;3.Shaoguan University, Shaoguan, Guangdong 512005, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高苹果缺陷和分类准确率。方法 提出一种基于改进YOLOv7-tiny的苹果缺陷识别方法。设计了多角度图像采集系统,对苹果表面进行采样和增强;利用YOLOv7-tiny网络提取苹果特征;通过改进模糊C均值聚类(IFCM)算法对提取的特征进行降维压缩;采用改进浣熊优化算法(ICOA)自动优化YOLOv7模型的超参数。对比分析不同分辨率、批量大小下,所提方法与ResNet+FPN、YOLOv5s、PP-YOLOE等方法的苹果缺陷识别与分类性能。结果 所提方法在样本分辨率224像素×224像素时检测准确率可达98.6%,召回率达97.9%,单张图像平均检测时间仅50 ms左右,显著优于所对比方法。结论 该系统具备高精度和实时性,能够有效提高苹果分类效率和质量,对水果自动分拣具有重要工程意义。

    Abstract:

    Objective To improve the accuracy of apple defect identification and classification.Methods An apple defect identification method based on improved YOLOv7-tiny is proposed. Firstly, a multi-angle image acquisition system is designed to sample and enhance the surface of the apple. Then, the YOLOv7-tiny network is used to extract the features of the apple. The extracted features are dimensionally reduced and compressed with the improved fuzzy C-means clustering (IFCM) algorithm. Finally, the improved coati optimization algorithm (ICOA) is adopted to automatically optimize the hyperparameters of the YOLOv7 model. The proposed method is compared with other methods, such as ResNet+FPN, YOLOv5s, and PP-YOLOE, in terms of apple defect identification and classification performance under different resolutions and batch sizes.Results When the sample resolution is 224 pixels×224 pixels, the proposed method achieves the detection accuracy of 98.6% and the recall rate of 97.9% and takes only about 50 ms to detect a single image on average, outperforming the other methods.Conclusion This system has high precision and real-time performance and can effectively improve the classification efficiency and quality of apples, which is of great engineering significance for the automatic sorting of fruits.

    参考文献
    相似文献
    引证文献
引用本文

李俊,曹博涛,彭新东.基于改进YOLOv7-tiny的苹果缺陷识别方法[J].食品与机械,2025,41(8):100-108.
LI Jun, CAO Botao, PENG Xindong. An apple defect identification method based on improved YOLOv7-tiny[J]. Food & Machinery,2025,41(8):100-108.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-23
  • 最后修改日期:2025-07-30
  • 录用日期:
  • 在线发布日期: 2025-09-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。