基于改进MOPSO和多目标的SCARA并联机器人的食品分拣轨迹优化
CSTR:
作者:
作者单位:

1.郑州铁路职业技术学院,河南 郑州 451460;2.河南工程学院,河南 郑州 451191;3.河北工业大学,天津 300401

作者简介:

通讯作者:

金光(1980—),男,郑州铁路职业技术学院副教授,硕士。E-mail:nndsg1@2980.com

中图分类号:

基金项目:

河南省科技厅科技攻关项目(编号:242102240130)


Trajectory optimization for food sorting based on improved MOPSO and multi-objective SCARA parallel robots
Author:
Affiliation:

1.Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 451460, China;2.Henan University of Engineering, Zhengzhou, Henan 451191, China;3.Hebei University of Technology, Tianjin 300401, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。方法 在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次B样条和多目标模型的SCARA高速并联机器人食品分拣轨迹优化方法。通过始末路径引入虚拟路径点优化非均匀五次B样条插值方法构建SCARA高速并联机器人食品分拣轨迹,以运行冲击和运行能耗综合最优为多目标轨迹优化模型,通过外部档案、全局最优粒子、惯性权重优化的多目标粒子群算法求解模型,完成SCARA高速并联机器人轨迹优化。通过试验对所提轨迹优化方法的运行冲击和能耗进行分析。结果 所提轨迹优化方法可有效实现SCARA高速并联机器人食品分拣过程中运行冲击与能耗的综合优化,轨迹平滑性与算法求解性能均得到显著提升。与优化前相比,运行冲击和运行能耗降低50%以上,不同分拣速度下的误差未超过1 mm。结论 通过结合改进非均匀五次B样条与多目标模型的轨迹优化方法,可实现机器人在食品分拣过程中运行冲击和能耗的综合最优。

    Abstract:

    Objective To balance the impact and energy consumption of SCARA high-speed parallel robots during food sorting, trajectory optimization methods are used to improve their comprehensive performance and meet the practical needs of smooth and low-energy-consumption food sorting.Methods Based on the analysis of the entire food sorting system, a trajectory optimization method for food sorting is proposed, combining an improved non-uniform quintic B-spline interpolation with multi-objective SCARA high-speed parallel robots. By introducing virtual path points into the starting and ending paths, a non-uniform quintic B-spline interpolation is used to construct the food sorting trajectory of SCARA high-speed parallel robots. The multi-objective trajectory optimization model is based on the simultaneous minimization of operational impact and energy consumption. The model is solved by a multi-objective particle swarm algorithm integrating external archives, global optimal particles, and inertia weight to achieve the trajectory optimization of SCARA high-speed parallel robots. The operational impact and energy consumption of the proposed method are analyzed through experiments.Results The proposed method effectively achieves comprehensive optimization of operational impact and energy consumption in the food sorting of SCARA high-speed parallel robots, and significantly improves trajectory smoothness and algorithm solving performance. Compared with the pre-optimization method, the operational impact and energy consumption are reduced by more than 50%, and the error at different sorting speeds does not exceed 1 mm.Conclusion The combination of the improved non-uniform quintic B-spline and multi-objective trajectory optimization achieves the comprehensive optimization of operational impact and energy consumption for robots in food sorting.

    参考文献
    相似文献
    引证文献
引用本文

金光,李若琪,郑强仁.基于改进MOPSO和多目标的SCARA并联机器人的食品分拣轨迹优化[J].食品与机械,2025,41(8):85-92.
JIN Guang, LI Ruoqi, ZHENG Qiangren. Trajectory optimization for food sorting based on improved MOPSO and multi-objective SCARA parallel robots[J]. Food & Machinery,2025,41(8):85-92.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-23
  • 最后修改日期:2025-07-29
  • 录用日期:
  • 在线发布日期: 2025-09-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。