基于改进EfficientDet的食品生产线核桃仁分选智能化研究
CSTR:
作者:
作者单位:

1.吕梁职业技术学院,山西 吕梁 032300;2.太原理工大学,山西 太原 030024;3.太原科技大学,山西 太原 030024;4.吕梁学院,山西 吕梁 033001

作者简介:

通讯作者:

秦新华(1987—),女,吕梁职业技术学院讲师,硕士。E-mail:qagssaq@126.com

中图分类号:

基金项目:

山西省高等学校科技创新计划项目(编号:2024L373);吕梁职业技术学院课题项目(编号:LLZY202102002)


Research on intelligent sorting of walnut kernels in food production lines based on improved EfficientDet
Author:
Affiliation:

1.Lvliang Vocational And Technical College, Lvliang, Shanxi 032300, China;2.Taiyuan University of Technology, Taiyuan, Shanxi 030024, China;3.Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China;4.Lvliang University, Lvliang, Shanxi 033001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高现有食品生产线核桃仁分选的效率和精度。方法 基于核桃仁分拣的智能化生产线,提出一种改进的EfficientDet模型用于食品生产线核桃仁智能化分选。通过在主干网络引入卷积注意力机制模块,强化模型对食品区域的聚焦能力。通过改进双向特征金字塔网络,增强模型对不同尺度食品的检测能力。通过Dynamic ReLU激活函数对原激活函数进行优化,增强模型对食品的检测性能,并将优化后的模型部署于食品生产线进行试验验证。结果 试验方法在核桃仁分选任务中实现对正常、碎壳、黑斑和干瘪核桃仁的精准识别与高效分类,单张图像检测时间为18 ms,平均精度均值达到97.92%,误检率降至1.0%,可有效提高食品生产线自动化水平。结论 该智能化分选方法有效解决了传统分选效率低和精度差的问题,在食品生产线自动化领域具有良好的应用前景与推广价值。

    Abstract:

    Objective To improve the efficiency and accuracy of walnut kernel sorting in existing food production lines.Methods Based on the intelligent production line for walnut kernel sorting, an improved EfficientDet model is proposed for the intelligent sorting of walnut kernels in food production lines. A convolutional attention mechanism module is introduced into the backbone network to strength the ability of the model to focus on food regions. The bidirectional feature pyramid network is improved to enhance the detection ability of the model for different scales of food. The original activation function is optimized through Dynamic ReLU activation function to enhance the detection performance of the model for food, and the optimized model is deployed in food production for experimental verification.Results The experimental method achieves precise recognition and efficient classification of normal, broken shells, black spots, and dried walnut kernels in the walnut kernel sorting task. This method achieves the detection of a single image within 18 ms, with the average accuracy of 97.92% and a false detection rate reduced to 1.0%. This can effectively improve the automation level of the food production line.Conclusion This intelligent sorting method effectively solves the problems of low efficiency and poor accuracy of conventional sorting methods, and has good application prospects and promotion value in food production line automation.

    参考文献
    相似文献
    引证文献
引用本文

秦新华,王义亮,李玉贵,等.基于改进EfficientDet的食品生产线核桃仁分选智能化研究[J].食品与机械,2025,41(8):77-84.
QIN Xinhua, WANG Yiliang, LI Yugui, et al. Research on intelligent sorting of walnut kernels in food production lines based on improved EfficientDet[J]. Food & Machinery,2025,41(8):77-84.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-12
  • 最后修改日期:2025-07-29
  • 录用日期:
  • 在线发布日期: 2025-09-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。