基于物联网和机器学习的番茄内外品质在线检测
CSTR:
作者:
作者单位:

1.山西省财政税务专科学校,山西 太原 030001;2.太原理工大学,山西 太原 030024;3.江苏电子信息职业学院,江苏 淮安 223003;4.圣路易斯大学,菲律宾 碧瑶 2600;5.南京农业大学,江苏 南京 210014

作者简介:

通讯作者:

高燕飞(1983—),女,山西省财政税务专科学校副教授,博士。E-mail:nfgsfqq@sina.com

中图分类号:

基金项目:

山西省职业教育教学改革与实践研究重点项目(编号:202302013);江苏省科技厅产学研项目(编号:BY20231018)


Online detection of tomato internal and external quality based on IoT and machine learning
Author:
Affiliation:

1.Shanxi Finance & Taxation College, Taiyuan, Shanxi 030001, China;2.Taiyuan University of Technology, Taiyuan, Shanxi 030024, China;3.Jiangsu Vocational College of Electronics and Information, Huai'an, Jiangsu 223003, China;4.Saint Louis University, Baguio 2600, Philippines;5.Nanjing Agricultural University, Nanjing, Jiangsu 210014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 解决传统的番茄人工分级效率低、主观性强的问题,开发一套基于物联网与机器学习技术的番茄内外品质在线检测与分级系统,实现番茄内外品质无损实时检测。方法 融合机器视觉与近红外光谱技术,基于物联网和机器学习技术,设计并实现了一套番茄在线无损检测与分级系统。通过实时采集番茄的外部图像和内部光谱信息,通过深度学习模型对外部缺陷、果形指数和果径进行检测,同时利用近红外光谱技术预测番茄的可溶性固形物和硬度,最终实现番茄的在线检测与分级。结果 番茄品质在线检测系统性能优异:外部品质检测准确率为94.9%,内部品质预测模型准确率为87.3%,融合分级后综合准确率提升至88.5%,系统处理效率达19个/min。结论 通过机器视觉与近红外光谱的协同优化,突破了传统单一品质检测的局限性,显著提升了番茄内外品质分级的精度与效率。

    Abstract:

    Objective To address the low efficiency and strong subjectivity of traditional manual tomato grading, this study developed an online tomato internal and external quality detection and grading system based on the Internet of Things (IoT) and machine learning technologies, enabling real-time, non-destructive detection of both internal and external quality attributes.Methods By integrating machine vision and near-infrared spectroscopy, and leveraging IoT and machine learning algorithms, a comprehensive system for online, non-destructive tomato detection and grading was designed and implemented. Real-time acquisition of external images and internal spectral information of tomatoes was performed. External defects, shape index, and diameter were detected using deep learning models, while soluble solids content and firmness were predicted using near-infrared spectroscopy. Ultimately, this enabled online detection and grading of tomato quality.Results The system demonstrated excellent performance: the accuracy of external quality detection reached 94.9%, internal quality prediction accuracy was 87.3%, and the integrated grading accuracy improved to 88.5%. The system achieved a processing efficiency of 19 tomatoes per minute.Conclusion By synergistically optimizing machine vision and near-infrared spectroscopy, the system overcomes the limitations of traditional single-attribute detection approaches, significantly improving the accuracy and efficiency of internal and external quality grading of tomatoes.

    参考文献
    相似文献
    引证文献
引用本文

高燕飞,徐雪峰,黄余,等.基于物联网和机器学习的番茄内外品质在线检测[J].食品与机械,2025,41(7):78-85.
GAO Yanfei, XU Xuefeng, HUANG Yu, et al. Online detection of tomato internal and external quality based on IoT and machine learning[J]. Food & Machinery,2025,41(7):78-85.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-05-28
  • 录用日期:
  • 在线发布日期: 2025-07-12
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。