基于改进YOLOv5s的白酒摘酒酒度检测方法
CSTR:
作者:
作者单位:

1.云南农业大学,云南 昆明 650500;2.云南财经大学,云南 昆明 650221;3.云南赤水源酒业有限责任公司,云南 昭通 657000

作者简介:

通讯作者:

鲁绍坤(1974—),男,云南农业大学副教授,博士。E-mail: lsk999@126.com

中图分类号:

基金项目:

云南“科技人才与平台计划”院士专家工作站(编号:202305AF150210)


Detection of alcohol content in liquor gathering based on improved YOLOv5s
Author:
Affiliation:

1.Yunnan Agricultural University, Kunming, Yunnan 650500, China;2.Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China;3.Yunchi Distillery Co., Ltd., Zhaotong, Yunnan 657000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高白酒的质量和产量,实现摘酒酒度的高效精准检测,建立改进YOLOv5s的白酒摘酒酒度模型。方法 结合YOLOv5s模型的自动提取特征,利用ShuffleNetV2轻量化模块替换原始模型中的特征提取模块,减少模型层级结构,使模型更加轻量化;在特征提取部分添加CBAM双通道注意力机制,提取不同维度的特征信息;使用SIOU损失函数替换原始模型的损失函数;构建一个基于YOLOv5s改进模型的白酒酒度检测方法。结果 改进后的模型准确率为91.9%,模型大小为6.7 MB,召回率和平均精度均值分别为89.3%和96.3%,较原始YOLOv5s模型分别提升了10.3%和12.3%;与当前主流的YOLOv3、YOLOv5m和YOLOv8 等模型相比,平均精度均值分别提升了44.3%,9.3%,13.1%。结论 试验提出的YOLOv5s改良模型对白酒摘酒酒度检测具有较高的准确率。

    Abstract:

    Objective To improve the quality and yield of liquor by achieving efficient and accurate detection of alcohol content during the liquor gathering process and to develop an detection model of alcohol content in liquor gathering based on improved YOLOv5s.Methods This study replaces the original feature extraction module of the YOLOv5s model with the lightweight ShuffleNetV2 module to reduce the model's depth, making it more compact. The convolutional block attention module (CBAM) dual-channel attention mechanism is added to the feature extraction process to capture features from different dimensions. The SIOU loss function is used to replace the original model's loss function. A novel method for alcohol content detection based on the improved YOLOv5s model is proposed.Results The improved model achieves an accuracy of 91.9%, with a model size of 6.7 MB. The recall rate and mean average precision (mAP) are 89.3% and 96.3%, respectively, showing an increase of 10.3% and 12.3% over the original YOLOv5s model. Compared to current mainstream models like YOLOv3, YOLOv5m, and YOLOv8, the mAP has increased by 44.3%, 9.3%, and 13.1%, respectively.Conclusion The improved YOLOv5s model proposed in this paper provides high accuracy in detecting alcohol content during the liquor gathering.

    参考文献
    相似文献
    引证文献
引用本文

王泷,纪元霞,吴红刚,等.基于改进YOLOv5s的白酒摘酒酒度检测方法[J].食品与机械,2025,41(7):65-71.
WANG Shuang, JI Yuanxia, WU Honggang, et al. Detection of alcohol content in liquor gathering based on improved YOLOv5s[J]. Food & Machinery,2025,41(7):65-71.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-26
  • 最后修改日期:2025-05-24
  • 录用日期:
  • 在线发布日期: 2025-07-12
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。