融合改进深度卷积神经网络和光谱技术的猕猴桃内部品质无损检测
CSTR:
作者:
作者单位:

1.湖南外贸职业学院,湖南 长沙 410114;2.华中农业大学,湖北 武汉 430070;3.武汉科技大学,湖北 武汉 430081

作者简介:

通讯作者:

陈玮(1981—),女,湖南外贸职业学院讲师,硕士。E-mail:cfgse56@yeah.net

中图分类号:

基金项目:

教育部高等学校科学研究发展中心专项课题(编号:ZJXF20236031)


Non-destructive detection of kiwifruit internal quality based on improved deep convolutional neural network and spectral technology
Author:
Affiliation:

1.Hunan International Business Vocational College, Changsha, Hunan 410114, China;2.Huazhong Agricultural University, Wuhan, Hubei 430070, China;3.Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 干物质、糖度是影响猕猴桃果实品质的两个重要指标,为实现猕猴桃干物质、糖度快速准确检测,提出一种融合改进深度卷积神经网络和光谱技术的猕猴桃内部品质关键指标无损检测方法。方法 运用光谱仪采集猕猴桃光谱数据,并利用格拉姆角场(GAF)变换将光谱数据转换为两类二维图像。构建多空卷积改进卷积神经网络模型预测分析猕猴桃品质关键指标,模型具备两个独立的CNN模块并联处理两类二维图像。通过设计多空卷积策略、聚类剪枝方法和引入通道注意力机制,以提升模型检测分析能力。结果 相比于其他模型,所提检测方法的干物质、糖度平均均方根误差分别降低了20.59%,13.04%,平均决定系数分别提高了6.45%,4.34%,平均相对预测偏差分别提高了6.99%,12.78%。结论 所提方法具有良好的猕猴桃内部品质关键指标检测分析能力,对猕猴桃内部品质无损检测具有一定的借鉴意义。

    Abstract:

    Objective Dry matter and sugar content are two important indicators affecting the quality of kiwifruit. To achieve rapid and accurate detection of these indicators, a non-destructive detection method for key internal quality indicators of kiwifruit is proposed, integrating improved deep convolutional neural network with spectral technology.Methods A spectrometer was used to collect spectral data of kiwifruit, and the data were transformed into two types of two-dimensional images using Gramian Angular Field (GAF) transformation. An improved convolutional neural network model with multi-dilated convolutions was constructed to predict and analyze key quality indicators of kiwifruit. The model consists of two independent CNN modules connected in parallel to process the two types of two-dimensional images. Multi-dilated convolution strategies, clustering pruning methods, and channel attention mechanisms were incorporated to enhance the model's detection and analysis performance.Results Compared with other models, the proposed method reduced the average root mean square errors of dry matter and sugar content by 20.59% and 13.04%, respectively, increased the average determination coefficients by 6.45% and 4.34%, respectively, and improved the average relative prediction deviations by 6.99% and 12.78%, respectively.Conclusion The proposed method demonstrates good capability in detecting and analyzing key internal quality indicators of kiwifruit, and provides a valuable reference for non-destructive internal quality testing of kiwifruit.

    参考文献
    相似文献
    引证文献
引用本文

陈玮,费文源,栗超,等.融合改进深度卷积神经网络和光谱技术的猕猴桃内部品质无损检测[J].食品与机械,2025,41(6):136-143.
CHEN Wei, FEI Wenyuan, LI Chao, et al. Non-destructive detection of kiwifruit internal quality based on improved deep convolutional neural network and spectral technology[J]. Food & Machinery,2025,41(6):136-143.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-13
  • 最后修改日期:2025-06-03
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码