基于可见近红外反射光谱的柑橘糖度在线检测
CSTR:
作者:
作者单位:

1.石河子大学机械电气工程学院,新疆 石河子 832003;2.兵团石河子国家农业科技园区管委会,新疆 石河子 832011

作者简介:

通讯作者:

高宗余(1974—),男,石河子大学副教授,博士。 E-mail:gzy19750510@163.com

中图分类号:

基金项目:

国家自然科学基金项目(编号:52265038);新疆维吾尔自治区2023人才发展基金—天池英才创新领军人才项目(编号:CZ002507)


Online detection of citrus sugar content based on visible near-infrared reflectance spectroscopy
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China;2.Management Committee of Xinjiang Production and Construction Corps Shihezi National Agricultural Science and Technology Park, Shihezi, Xinjiang 832011, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 降低柑橘糖度检测分析过程的复杂度、提高检测糖度准确度及减小检测过程的破坏性。方法 设计一种基于可见近红外反射光谱的柑橘糖度在线检测装置。以云南金牛柑橘为研究对象,采用光谱—理化值共生距离(SPXY)划分分类方法建立建模集和验证集,分别对比分析了多元散射校正(MSC)、标准正态变换(SNV)和卷积平滑(SG)等方法预处理后的偏最小二乘回归(PLS)建模检测效果,确定最佳预处理方法。并对比研究了连续投影算法(SPA)、竞争性自适应重加权算法(CARS)和随机蛙跳算法(RF)对预处理后的光谱数据进行特征波段提取,筛选出合适的特征波长点,建立PLS预测模型。结果 采用SG+MSC+CARS处理筛选出的95个特征波长点建立的PLS模型预测效果最好,其RcRp分别为0.913和0.881、RMSEC和RMSEP分别为0.274和0.207、RPD为2.114。结论 该方法有效降低了柑橘糖度检测过程的复杂性,提高了检测准确度并减小了检测破坏性。

    Abstract:

    Objective To lower the complexity, improve the accuracy and reduce the damage of the detection process of citrus sugar content.Methods An online detection device for citrus sugar content is designed based on visible near-infrared reflectance spectroscopy. With Jinniu Citrus as the research object, the modeling set and verification set are divided by sample set partitioning based on the joint x-y distance (SPXY) classification method. The partial least square regression (PLS) modeling and detection effects after pretreatment are respectively compared and analyzed by methods including multiple scattering correction (MSC), standard normal variation (SNV), and SG-smoothing (SG) to determine the optimal pretreatment method. At the same time, a comparative study is conducted on the extraction of feature bands from pretreatment spectral data using the successive projections algorithm (SPA), the competitive adaptive reweighted sampling (CARS), and the random frog (RF) algorithm. Suitable feature wavelength points are screened out and the PLS prediction models are established.Results The PLS model established by screening out the 95 feature wavelength points using SG+MSC+CARS has the best prediction performance. Its correlation coefficient of calibration (Rc) and correlation coefficient of prediction (Rp) are 0.913 and 0.881, respectively, root mean square error of the calibration set (RMSEC) and root mean square error of the prediction set (RMSEP) are 0.274 and 0.207, respectively, and residual predictive deviation (RPD) is 2.114.Conclusion This method effectively lowers the complexity of the citrus sugar content detection process, improves the detection accuracy, and reduces the detection damage.

    参考文献
    相似文献
    引证文献
引用本文

李利桥,高宗余,时如意,等.基于可见近红外反射光谱的柑橘糖度在线检测[J].食品与机械,2025,41(6):81-87.
LI Liqiao, GAO Zongyu, SHI Ruyi, et al. Online detection of citrus sugar content based on visible near-infrared reflectance spectroscopy[J]. Food & Machinery,2025,41(6):81-87.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-17
  • 最后修改日期:2025-03-01
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码