基于极限学习机和晶体结构算法的污染食品早期检测
CSTR:
作者:
作者单位:

1.商丘职业技术学院,河南 商丘 476100;2.河南农业大学,河南 郑州 450002;3.河北工程大学,河北 邯郸 056038

作者简介:

通讯作者:

祝福(1979—),男,河南商丘职业技术学院讲师,硕士。E-mail:zhufu081@sohu.com

中图分类号:

基金项目:

国家自然科学基金资助项目(编号:11501525);河南省高等学校重点科研项目(编号:20ZX003);河南省自然科学基金项目(编号:222300420579)


Early detection of contaminated food based on extreme learning machine and crystal structure algorithm
Author:
Affiliation:

1.Shangqiu Polytechnic, Shangqiu, Henan 476100, China;2.Henan Agricultural University, Zhengzhou, Henan 450002, China;3.Hebei University of Engineering, Handan, Hebei 056038, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提出一种基于极限学习机和晶体结构算法的污染食品早期检测方法。方法 通过晶体结构算法优化特征选择,结合极限学习机进行快速高效的分类与检测,提升污染食品早期检测精度与效率。结果 与传统方法相比,试验方法在准确率(94.5%)和F1分数(93.2%)上均有显著提升,且在召回率和处理速度方面也表现出优于其他最新方法的优势。与最新的深度学习方法相比,试验方法的训练时间约缩短了30%,检测速度提高了25%。结论 基于极限学习机与晶体结构算法的污染食品早期检测方法在提高检测精度、加快检测速度及优化计算效率方面表现出了明显优势,具有较好的实际应用前景,尤其适用于快速大规模食品安全检测。

    Abstract:

    Objective To propose an early detection method for contaminated food based on the extreme learning machine and crystal structure algorithm.Methods The crystal structure algorithm is used to optimize feature selection, combined with the extreme learning machine for fast and efficient classification and detection, aiming to improve the accuracy and efficiency of early detection of contaminated food.Results Compared to traditional methods, the proposed approach shows significant improvements in accuracy (94.5%) and F1-score (93.2%). It also outperforms other state-of-the-art methods in recall rate and processing speed. Compared to the latest deep learning methods, the training time is reduced by about 30%, and the detection speed is improved by 25%.Conclusion The early detection method for contaminated food based on the extreme learning machine and crystal structure algorithm demonstrates clear advantages in improving detection accuracy, speeding up detection, and optimizing computational efficiency. It holds promising practical application prospects, especially for rapid and large-scale food safety detection.

    参考文献
    相似文献
    引证文献
引用本文

祝福,刘瑞卿,潘克锋,等.基于极限学习机和晶体结构算法的污染食品早期检测[J].食品与机械,2025,41(6):68-74.
ZHU Fu, LIU Ruiqing, PAN Kefeng, et al. Early detection of contaminated food based on extreme learning machine and crystal structure algorithm[J]. Food & Machinery,2025,41(6):68-74.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-05-18
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码