基于稀疏高光谱特征选择算法的牛肉糜掺假检测
CSTR:
作者:
作者单位:

1.四川托普信息技术职业学院,四川 成都 611743;2.西南科技大学,四川 绵阳 621010;3.四川农业大学,四川 成都 611130

作者简介:

通讯作者:

马永波(1979—),男,四川托普信息技术职业学院讲师,学士。E-mail: stgdh09@139.com

中图分类号:

基金项目:

四川省教育厅教育教学改革研究项目(编号:GZJG2022-558)


Detection of beef mince adulteration based on sparse hyperspectral feature selection algorithm
Author:
Affiliation:

1.Sichuan Top Information Technology Vocational Institute, Chengdu, Sichuan 611743, China;2.Southwest University of Science and Technology, Mianyang, Sichuan 621010, China;3.Sichuan Agricultural University, Chengdu, Sichuan 611130, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 利用高光谱技术结合稀疏高光谱特征选择实现牛肉糜中掺入豌豆蛋白、鸭肉糜、鸡肉糜、猪肉糜的高准确率检测。方法 提取牛肉糜样本原始光谱数据,采用标准正态变量变换(SNV)、多元散射校正(MSC)、一阶微分(D1)、移动平均(MA)预处理方法对光谱数据进行处理。设计一种基于稀疏表示的高光谱特征选择算法,该算法构建稀疏降维框架,并采用群智能优化对光谱特征选择目标函数进行优化求解,在保持数据多样性的同时最大程度地降低光谱数据维度。分别建立基于稀疏高光谱特征选择的极限学习机分类(ELMC)、随机森林(RF)和支持向量机分类(SVC)的掺假分类检测模型,并分析多高光谱数据融合对检测结果的影响。结果 相比于全波段,基于稀疏特征选择的3种检测模型的分类准确率分别提高了2.33%,1.86%,2.01%,且优于基于连续投影(SPA)特征提取、自适应重加权采样(CARS)特征提取建立的检测模型。采用SNV、MSC预处理组合光谱数据的检测分类准确率最高,相比单一光谱数据分类准确率分别提高了0.79%,0.64%,0.65%。结论 所提方法实现了对牛肉糜掺假的有效检测。

    Abstract:

    Objective To achieve high-precision detection of beef mince adulterated with pea protein, duck mince, chicken mince, and pork mince by combining hyperspectral technology with sparse hyperspectral feature selection.Methods The original spectral data of the beef mince samples is extracted and processed using standard normal variable transformation (SNV), multiplicative scatter correction (MSC), first-order differential (D1), and moving average (MA) preprocessing methods. A hyperspectral feature selection algorithm is designed based on sparse representation. This algorithm constructs a sparse dimensionality reduction framework and uses swarm intelligence optimization to optimize and solve the objective function of spectral feature selection. The spectral data dimensionality is reduced as much as possible while data diversity is maintained. Extreme learning machine classification (ELMC), random forest (RF), and support vector classification (SVC) adulteration detection models are built based on sparse hyperspectral feature selection are established, respectively. The effect of hyperspectral data combinations on the detection results is analyzed.Results Compared with the full wavelength, the classification accuracies of the three detection models based on sparse feature selection are increased by 2.33%, 1.86%, and 2.01%, respectively, superior to the ones established based on successive projections algorithm (SPA) feature extraction and competitive adaptive reweighted sampling (CARS) feature extraction. The combined spectral data processed by SNV and MSC has the highest detection and classification accuracy. Compared with that of the single spectral data, the classification accuracy is increased by 0.79%, 0.64%, and 0.65%, respectively.Conclusion The proposed method achieves effective detection of beef mince adulteration.

    参考文献
    相似文献
    引证文献
引用本文

马永波,彭玉,徐艺萍,等.基于稀疏高光谱特征选择算法的牛肉糜掺假检测[J].食品与机械,2025,41(6):51-56.
MA Yongbo, PENG Yu, XU Yiping, et al. Detection of beef mince adulteration based on sparse hyperspectral feature selection algorithm[J]. Food & Machinery,2025,41(6):51-56.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-07
  • 最后修改日期:2025-05-23
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码