基于YOLOv8n的猪肉新鲜度图像识别算法
CSTR:
作者:
作者单位:

1.江苏大学农业工程学院,江苏 镇江 212013;2.江苏省农业科学院农业设施与装备研究所, 江苏 南京 210014;3.江苏省农业科学院农产品加工研究所,江苏 南京 210014

作者简介:

通讯作者:

柳军(1984—),男,江苏省农业科学院副研究员,硕士。E-mail: liujun@jaas.ac.cn

中图分类号:

基金项目:

国家重点研发计划项目(编号:2022YFD2100500)


Image recognition algorithm for pork freshness based on YOLOv8n
Author:
Affiliation:

1.School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China;2.Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China;3.Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 基于计算机视觉技术,实现规模化冷鲜肉产业链中对猪肉新鲜度的准确、快速和无损检测。方法 提出了一种基于YOLOv8n的猪肉新鲜度图像识别算法。利用多种数据增强方法相结合加强对图像中猪肉特征的提取,采用迁移学习的试验方法并选择适配的优化器,改善模型的训练权重,从而提高最终的识别准确率。以YOLOv8n图像识别算法为基础,通过对算法进行数据增强、改善优化器后,构成改进方法后的YOLOv8n-cls模型。结果 迁移学习并改善优化器后的猪肉新鲜度图像识别准确率平均值为99.4%,召回率为83.8%,图像识别的平均计算精度(mAP)为91.4%,图像识别帧率为149 Hz,体现出了良好的试验效果。模型在通过归一化训练和消融试验后的猪肉新鲜度图像识别准确率为99.9%,提高了0.5%。结论 改进方法后的YOLOv8n-cls在保证应有的识别速度的同时提升了图像识别精度,可满足实际生产中猪肉新鲜度实时检测识别的需求。

    Abstract:

    Objective To realize precise, swift, and non-invasive detection of pork freshness in large-scale cold meat industry chains based on computer vision technology.Methods An image recognition algorithm for pork freshness is proposed based on YOLOv8n. Various data augmentation methods are employed to enhance the pork feature extraction from images. The transfer learning experiment method is utilized, an appropriate optimizer is selected, and the training weights of the model are improved for higher accuracy in the final identification. Based on the YOLOv8n image recognition algorithm, the improved YOLOv8n-cls model is developed by data augmentation and optimizer improvement for the algorithm.Results After transfer learning and improving the optimizer, the average recognition accuracy, recall rate, and mean average precision (mAP) of pork freshness image recognition achieve 99.4%, 83.8%, and 91.4%, respectively, at an image recognition frame rate of 149 Hz, demonstrating promising experimental outcomes. Following normalization training and ablation testing, the accuracy of pork freshness image recognition increases by 0.5% to reach 99%.Conclusion The improved YOLOv8n-cls model improves image recognition accuracy while maintaining requisite speed, meeting demands for pork freshness real-time detection, and recognizing in practical production settings.

    参考文献
    相似文献
    引证文献
引用本文

王炼,柳军,皮杰,等.基于YOLOv8n的猪肉新鲜度图像识别算法[J].食品与机械,2025,41(5):98-104.
WANG Lian, LIU Jun, PI Jie, et al. Image recognition algorithm for pork freshness based on YOLOv8n[J]. Food & Machinery,2025,41(5):98-104.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-29
  • 最后修改日期:2025-03-21
  • 录用日期:
  • 在线发布日期: 2025-06-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。