基于改进YOLOv11与GWO-ELM的食品生产线黄桃自动分级方法
CSTR:
作者:
作者单位:

1.宜宾职业技术学院,四川 宜宾 644001;2.四川轻化工大学,四川 宜宾 644001;3.西南交通大学,四川 成都 610016

作者简介:

通讯作者:

彭永杰(1983—),男,宜宾职业技术学院副教授,硕士。E-mail:mmgagf@163.com

中图分类号:

基金项目:

四川省中央引导地方科技发展专项项目(编号:2024ZYD0300);宜宾市科技计划项目(编号:2021ZYY001)


Automatic grading method of yellow peaches on food production line based on improved YOLOv11 and GWO-ELM
Author:
Affiliation:

1.Yibin Vocational and Technical College, Yibin, Sichuan 644001, China;2.Sichuan University of Science & Engineering, Yibin, Sichuan 644001, China;3.Southwest Jiaotong University, Chengdu, Sichuan 610016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高食品生产线黄桃自动分级方法的准确率和效率。方法 在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进YOLOv11模型识别缺陷,并结合果型指数与色泽判定外部品质。内部品质则通过高光谱仪采集,经特征筛选后,输入改进灰狼算法优化的极限学习机模型中检测可溶性固形物和硬度指标判定内部品质。结合外部品质和内部品质对黄桃进行分级。通过试验对其性能进行验证。结果 试验方法可以实现食品生产线黄桃内外品质的有效检测,综合内部品质具有较高的分级准确率和效率,分级准确率大于95.00%,平均分级时间小于0.3 s。结论 将机器视觉、高光谱技术以及智能算法相结合,可实现食品品质的快速无损检测。

    Abstract:

    Objective To improve the accuracy and efficiency of the automatic grading method for yellow peaches on the food production lineMethods Based on the yellow peach automatic grading system (machine vision and hyperspectral technology), a new method for automatic detection of yellow peach quality is proposed, which integrates an improved YOLOv11 and an improved extreme learning machine (ELM). External quality images are captured by a CMOS sensor camera, and defects are identified using the improved YOLOv11 model. The external quality is determined by the fruit shape index and color. Internal quality is detected using a hyperspectral instrument, and after feature selection, the data is input into an ELM model optimized by an improved grey wolf algorithm to detect soluble solids and hardness as internal quality indicators. The yellow peach is graded based on both external and internal qualities. The performance of the method is verified through experiments.Results The experimental method effectively detects both the internal and external qualities of yellow peaches on the food production line, with a high grading accuracy and efficiency, achieving a grading accuracy greater than 95.00% and an average grading time of less than 0.3 seconds.Conclusion By combining machine vision, hyperspectral technology, and intelligent algorithms, rapid and non-destructive detection of food quality can be achieved.

    参考文献
    相似文献
    引证文献
引用本文

彭永杰,赵良军,龙绪明.基于改进YOLOv11与GWO-ELM的食品生产线黄桃自动分级方法[J].食品与机械,2025,41(5):89-97.
PENG Yongjie, ZHAO Liangjun, LONG Xuming. Automatic grading method of yellow peaches on food production line based on improved YOLOv11 and GWO-ELM[J]. Food & Machinery,2025,41(5):89-97.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-16
  • 最后修改日期:2025-05-03
  • 录用日期:
  • 在线发布日期: 2025-06-13
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。