基于近红外光谱法的馥郁香型白酒基酒中4种主要有机酸检测模型构建
CSTR:
作者:
作者单位:

1.吉首大学化学化工学院,湖南 吉首 416000;2.湘西自治州馥郁香型白酒酿造与品质控制重点实验室, 湖南 吉首 416000;3.酒鬼酒股份有限公司,湖南 吉首 416000

作者简介:

通讯作者:

姚茂君(1968—),男,吉首大学教授,硕士。E-mail:yaomaojun@126.com

中图分类号:

基金项目:

湖南省重点研发计划项目(编号:2024JK2151-3);湘西州技术攻关“揭榜挂帅”项目(编号:2022JBGS0002);吉首大学研究生校级科研项目(编号:Jdy23006)


Detection modelling of four major organic acids in the base wine of Fuyuxiangxing crude Baijiu based on near-infrared spectroscopy
Author:
Affiliation:

1.College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China;2.Xiangxi Autonomous Prefecture Key Laboratory of Fuyuxiangxing Baijiu Brewing and Quality Control, Jishou University, Jishou, Hunan 416000, China;3.Jiugui Liquor Co., Ltd., Jishou, Hunan 416000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 利用近红外光谱技术与化学计量学方法对47个馥郁香型白酒基酒中的4种主要有机酸进行快速定量分析。方法 采用Kennard-Stone(K-S)算法划分样本,结合归一化(Normalization)、标准正态变量变换(SNV)和Savitzky-Golay平滑等预处理策略,通过交叉验证优化模型参数,并评估主成分数和波段选择对主成分回归(PCR)和偏最小二乘法回归(PLSR)模型性能的影响。结果 PCR模型对4种主要有机酸(乙酸、正丁酸、正戊酸、正己酸)的预测相关系数均高于0.9,预测均方根误差均小于7;PLSR模型的预测相关系数均高于0.8,预测均方根误差均小于8,表明模型具有良好的泛化能力和预测精度。结论 近红外光谱技术结合PCR和PLSR建模方法可有效实现馥郁香型白酒基酒中4种有机酸的快速定量分析。

    Abstract:

    Objective To rapidly quantify four major organic acids in 47 base wines of Fuyuxiangxing crude Baijiu using near-infrared spectroscopy (NIR) and chemometrics.Methods The study used the Kennard-Stone (K-S) algorithm to divide the samples, combined with preprocessing strategies such as normalization, standard normal variate transformation (SNV), and Savitzky-Golay smoothing. Model parameters were optimized through cross-validation, and the effects of the number of principal components and band selection on the performance of the principal component regression (PCR) and partial least squares regression (PLSR) models were evaluated.Results The validation results showed that the prediction correlation coefficients (Rc2) of the PCR models for the four major organic acids (acetic acid, n-butyric acid, n-pentanoic acid, and n-hexanoic acid) were all higher than 0.9, and the root mean square errors of prediction (RMSEPs) were all lower than 7. The Rc2 values of the PLSR models were all higher than 0.8, and the RMSEPs were all lower than 8, indicating that the models had good generalization ability and prediction accuracy.Conclusion NIR combined with PCR and PLSR modeling methods can effectively achieve the rapid quantitative analysis of the four organic acids in Fuyuxiangxing crude Baijiu base wine.

    参考文献
    相似文献
    引证文献
引用本文

张云霞,余佶,李运通,等.基于近红外光谱法的馥郁香型白酒基酒中4种主要有机酸检测模型构建[J].食品与机械,2025,41(4):72-80.
ZHANG Yunxia, YU Ji, LI Yuntong, et al. Detection modelling of four major organic acids in the base wine of Fuyuxiangxing crude Baijiu based on near-infrared spectroscopy[J]. Food & Machinery,2025,41(4):72-80.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-10
  • 最后修改日期:2025-03-20
  • 录用日期:
  • 在线发布日期: 2025-06-02
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。