基于YOLO-HDR的小龙虾缺陷品质检测方法
CSTR:
作者:
作者单位:

湖北工业大学电气与电子工程学院,湖北 武汉 430068

作者简介:

通讯作者:

王淑青(1969—),女,湖北工业大学教授,博士。E-mail:1258868715@qq.com

中图分类号:

基金项目:

国家自然科学基金(编号:62306107)


A method for detecting quality defects of crayfish based on YOLO-HDR
Author:
Affiliation:

School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 改善工业生产线小龙虾质量检测方法单一、效率低、检测成本高的问题。方法 提出了一种基于YOLO-HDR的轻量化神经网络检测模型。使用PP-HGNetv2模型设计一种新的YOLOv8骨干网络并引入HGstem和DWConv的轻量化模块重构网络;使用动态卷积块以及官方库中的其他轻量化卷积(GhostConv、RepConv)重新设计新骨干网络的HGBlock,得到动态高性能网络模块(DynamicHGBlock、RepHGBlock、GhostHGBlock等)来改进HGBlock,以提升网络的特征表达能力;用重复跨阶段局部保边注意力网络RepNCSPELAN4改进原颈部网络的C2f模块,并改善骨干模块改进后的轻量网络的性能。结果 改进模型的精确度及平均精度均值达到92.8%和95.9%,相较于原模型分别提高了3.5%和1.9%,优于其他对比目标检测算法。改进后模型的参数量及模型大小相比原 YOLOv8n 模型分别降低了17.7%和16.2%,计算量减少了19.8%。结论 试验方法在密集遮挡噪声背景下的检测性能均有提高,能够满足工业流水线小龙虾冷冻分装前复杂背景下质量检测需求。

    Abstract:

    Objective This study aims to address the problems of single methods, low efficiency, and high costs of the quality inspection of crayfish in industrial processing.Methods A YOLO-HDR-based lightweight neural network model was proposed. The PP-HGNetv2 model was employed to design a new YOLOv8 backbone network, and the lightweight modules of HGstem and DWConv were introduced to reconstruct the network. The dynamic convolution block and other lightweight convolutions (GhostConv and RepConv) in the official library were used to redesign the HGBlock of the new backbone network. The dynamic high-performance network modules (DynamicHGBlock, RepHGBlock, and GhostHGBlock) were obtained to improve HGBlock and the feature expression of the network. The C2f module of the original neck network was improved by the repeated cross-stage local edge-preserving attention network RepNCSPELAN4 to address the performance degradation caused by the lightweight network.Results The accuracy and average precision of the improved model reached 92.8% and 95.9%, respectively, which were 3.5% and 1.9% higher than those of the original model and better than those of other comparative target detection algorithms. The number of parameters and model size of the improved model were reduced by 17.7% and 16.2%, respectively, compared with those of the original YOLOv8n model, and the amount of computation was reduced by 19.8%.Conclusion The method established in this study demonstrates improved detection performance under the dense occlusion noise background, enabling the quality inspection of crayfish in industrial processing in the complex background before frozen packaging.

    参考文献
    相似文献
    引证文献
引用本文

王淑青,陈开元,周淼,等.基于YOLO-HDR的小龙虾缺陷品质检测方法[J].食品与机械,2025,41(3):100-107.
WANG Shuqing, CHEN Kaiyuan, ZHOU Miao, et al. A method for detecting quality defects of crayfish based on YOLO-HDR[J]. Food & Machinery,2025,41(3):100-107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-28
  • 最后修改日期:2024-12-12
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。