基于改进DBO和多目标模型的食品分拣机器人分拣策略
CSTR:
作者:
作者单位:

1.江苏省金湖中等专业学校,江苏 淮安 223001;2.江苏联合职业技术学院常州刘国钧分院, 江苏 常州 213000;3.常州大学,江苏 常州 213164;4.江苏科技大学,江苏 镇江 212100

作者简介:

通讯作者:

傅明娣(1976—),女,江苏省金湖中等专业学校高级讲师,硕士。E-mail:igswg90@yeah.net

中图分类号:

基金项目:

江苏省自然科学基金项目(编号:22JS135107);江苏省教育教学改革研究课题(编号:ZYB530)


Sorting strategy of food sorting robot based on improved DBO and multi-objective model
Author:
Affiliation:

1.Jiangsu Jinhu Secondary Professional School, Huai'an, Jiangsu 223001, China;2.Liu Guojun Branch, Jiangsu United Vocational and Technical College, Changzhou, Jiangsu 213000, China;3.Changzhou University, Changzhou, Jiangsu 213164, China;4.Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提高Delta机器人在食品自动化分拣系统中的运行效率和稳定性。方法 在对食品自动化分拣系统进行分析的基础上,提出一种结合机器视觉、多目标模型和改进蜣螂优化算法的Delta机器人分拣策略。通过机器视觉完成食品实时位置获取,建立以运行路径和稳定性综合最优为目标的分拣优化模型,通过改进的蜣螂优化算法对模型进行求解,并对试验方法的性能进行验证。结果 与常规方法相比,试验方法具有更快的平均分拣速度和更小的末端振动冲击,平均分拣速度<0.60个/s,末端加速度均值<16 m/s2结论 通过结合机器视觉、多目标模型和智能算法可以有效提高Delta机器人的分拣效率和稳定性。

    Abstract:

    Objective To enhance the operational efficiency and stability of Delta robots in food automation sorting systems.Methods Based on an analysis of food automation sorting systems, a Delta robot sorting strategy combining machine vision, a multi-objective model, and an improved dung beetle optimizer algorithm was proposed. Machine vision was used to obtain real-time food position data, and a sorting optimization model was established with the goal of achieving the optimal balance between running path efficiency and stability. The model was solved using an improved mantis optimization algorithm, and the performance of the proposed method was experimentally verified.Results Compared with conventional methods, the proposed method achieved a faster average sorting speed and lower end vibration impact, with an average sorting speed of <0.60 pieces/s and an average end acceleration of <16 m/s2.Conclusion The integration of machine vision, a multi-objective model, and intelligent algorithms can effectively improve the sorting efficiency and stability of Delta robots.

    参考文献
    相似文献
    引证文献
引用本文

傅明娣,李忠,王倩茹,等.基于改进DBO和多目标模型的食品分拣机器人分拣策略[J].食品与机械,2025,41(3):88-93.
FU Mingdi, LI Zhong, WANG Qianru, et al. Sorting strategy of food sorting robot based on improved DBO and multi-objective model[J]. Food & Machinery,2025,41(3):88-93.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-22
  • 最后修改日期:2024-12-28
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。