融合改进卷积神经网络和层次SVM的鸡蛋外观检测
CSTR:
作者:
作者单位:

1.河南省经济管理学校,河南 南阳 473000;2.南阳理工学院,河南 南阳 473000;3.河南工业大学,河南 郑州 450001;4.河南农业大学,河南 郑州 450002

作者简介:

通讯作者:

姚万鹏(1976—),男,河南省经济管理学校高级讲师,硕士。E-mail:weixfgghha@139.com

中图分类号:

基金项目:

河南省高等学校重点项目(编号:24B520027);河南省科技攻关项目(编号:222102110045)


Egg appearance detection based on improved CNN and hierarchical SVM
Author:
Affiliation:

1.Henan Economics and Management School, Nanyang, Henan 473000, China;2.Nanyang Institute of Technology, Nanyang, Henan 473000, China;3.Henan University of Technology, Zhengzhou, Henan 450001, China;4.Henan Agricultural University, Zhengzhou, Henan 450002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。方法 提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。① 采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。② 设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。③ 建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。结果 所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。结论 所提方法能够有效实现对鸡蛋的在线实时精细化分类。

    Abstract:

    Objective To achieve fine classification of eggs and improve the accuracy of egg appearance detection.Methods An egg appearance detection scheme based on improved convolutional neural network (CNN) and hierarchical support vector machine (SVM) was proposed. ① Egg images with different orientations and appearances were captured using an egg machine vision image acquisition device, and image enhancement techniques were applied to expand the egg image database. ② An improved Coati optimization algorithm (COA) and fuzzy C-means (FCM) clustering algorithm were designed, based on which the structure and hyperparameters of the CNN model were optimized to enhance its generalization ability. The optimized CNN was then used for deep learning on the egg image database to effectively extract features from egg appearance images. ③ A hierarchical SVM was established for fine classification of egg appearance, ultimately achieving accurate detection and classification of egg appearance.Results The detection accuracy of the proposed egg appearance detection scheme improved by 1.74%~4.31%, and the detection time was reduced by 21.68%~53.51%.Conclusion The proposed method effectively enables online real-time fine classification of eggs.

    参考文献
    相似文献
    引证文献
引用本文

姚万鹏,张凌晓,赵肖峰,等.融合改进卷积神经网络和层次SVM的鸡蛋外观检测[J].食品与机械,2025,(1):158-164.
YAO Wanpeng, ZHANG Lingxiao, ZHAO Xiaofeng, et al. Egg appearance detection based on improved CNN and hierarchical SVM[J]. Food & Machinery,2025,(1):158-164.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-12
  • 最后修改日期:2024-12-26
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。