基于模糊控制与Transformer的食品智能温控方法
CSTR:
作者:
作者单位:

1.新乡职业技术学院,河南 新乡 453006;2.河南工业大学,河南 郑州 450001;3.郑州轻工业大学,河南 郑州 450002

作者简介:

通讯作者:

由春辉(1983—),男,新乡职业技术学院讲师。E-mail:youch019@sina.com

中图分类号:

基金项目:

河南省科技厅技术研究项目(编号:231023200602);河南省高等学校重点科研项目(编号:23B5320106)


Intelligent food temperature control method based on fuzzy control and Transformer
Author:
Affiliation:

1.Xinxiang Vocational and Technical College, Xinxiang, Henan 453006, China;2.Henan University of Technology, Zhengzhou, Henan 450001, China;3.Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对传统的温控方法(如PID控制)在应对动态、多变量复杂场景时存在响应迟缓、超调显著以及无法充分利用预测信息的局限性,提出一种结合模糊控制与Transformer预测模型的食品智能温控方法,旨在提高方法的温控精度、响应速度以及能耗效率。方法 利用Transformer对未来多时间步的环境温度和目标温度进行趋势预测,基于模糊逻辑进行实时的温度偏差控制,并以披萨坯的温控为例进行实验验证。结果 试验提出的智能温控方法在预测和控制性能方面均优于传统方法。与其他两种预测模型对比,在3种时间序列预测中,Transformer模型的平均绝对误差(MAE)降低了21.30%(从0.19 ℃降低到0.15 ℃),均方根误差(RMSE)降低了16.67%~25.00%。在冷藏库温控场景中,与其他4种方法相比,试验方法的温度超调量降低了15.73%~39.27%,响应时间缩短了14.24%~33.52%,稳态误差减小至33.30%~62.50%。在烘焙炉温控场景中,与其他4种方法相比,试验方法的温度超调量降低了11.24%~33.05%,响应时间缩短了11.54%~33.03%,稳态误差减小至40.00%~71.43%。结论 结合模糊控制与Transformer的智能温控方法在复杂食品贮藏与加工场景下表现出卓越的预测精度和控制效果,相较于其他方法具有显著的性能优势。

    Abstract:

    Objective In response to the limitations of traditional temperature control methods (such as PID control), including slow response, significant overshoot, and the inability to fully utilize predictive information in dynamic, multi-variable complex scenarios, an intelligent food temperature control method combining fuzzy control and the Transformer prediction model is proposed. This method aims to improve temperature control accuracy, response speed, and energy consumption efficiency.Methods The Transformer model is used to predict the trend of future multi-time-step ambient temperature and target temperature, and real-time temperature deviation control is implemented based on fuzzy logic. The proposed method is experimentally validated using pizza billet temperature control as an example.Results The experimental results show that the proposed intelligent temperature control method outperforms traditional methods in both prediction and control performance. Compared with other prediction models, the mean absolute error (MAE) of the Transformer model is reduced by 21.30% (from 0.19 ℃ to 0.15 ℃), and the root mean square error (RMSE) is reduced by 16.67% to 25.00% across three time-series predictions. In the cold storage temperature control scenario, compared with the other four methods, the temperature overshoot is reduced by 15.73%~39.27%, the response time is shortened by 14.24%~33.52%, and the steady-state error is reduced by 33.30%~62.50%. In the oven temperature control scenario, compared with the other four methods, the temperature overshoot is reduced by 11.24%~33.05%, the response time is shortened by 11.54%~33.03%, and the steady-state error is reduced by 40.00%~71.43%.Conclusion The intelligent temperature control method combining fuzzy control and Transformer shows excellent prediction accuracy and control performance in complex food storage and processing scenarios, with significant performance advantages over other methods.

    参考文献
    相似文献
    引证文献
引用本文

由春辉,李如成,刘艳飞,等.基于模糊控制与Transformer的食品智能温控方法[J].食品与机械,2025,(1):120-125.
YOU Chunhui, LI Rucheng, LIU Yanfei, et al. Intelligent food temperature control method based on fuzzy control and Transformer[J]. Food & Machinery,2025,(1):120-125.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-11
  • 最后修改日期:2025-01-09
  • 录用日期:
  • 在线发布日期: 2025-03-31
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。