基于双通道改进卷积神经网络的新鲜葡萄品质检测分析
CSTR:
作者:
作者单位:

(1. 河南水利与环境职业学院 ,河南 郑州 450000; 2. 信阳农林学院 ,河南 信阳 464000; 3. 河南农业大学 ,河南 郑州 450002)

作者简介:

通讯作者:

王丹(1980—),女,河南水利与环境职业学院助理工程师,硕士。E-mail:xniwr23@126.com

中图分类号:

基金项目:

河南省科技攻关项目(编号:242102321178)


Fresh grape quality inspection based on dual-channel improved convolutional neural network
Author:
Affiliation:

(1. Henan Vocational College of Water Conservancy and Environment , Zhengzhou , Henan 450000 , China; 2. Xinyang Agriculture and Forestry University , Xinyang , Henan 464000 , China; 3. Henan Agricultural University , Zhengzhou , Henan 450002 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]实现对新鲜葡萄关键品质指标的准确、无损检测,提出一种基于双通道改进卷积神经网络的新鲜葡萄品质检测分析方法。[方法]采用光纤光谱仪和 CCD相机采集葡萄样本可见 -近红外光谱和表征图像信息。建立双通道改进卷积神经网络模型,运用 GAF变换将一维光谱数据转换为二维图像,以利于卷积神经网络模型从光谱中提出有效特征。设计具有不同尺寸大小卷积核的卷积层对转换后的光谱二维图像和葡萄表征图像进行特征提取,以提升卷积神经网络模型对两类图像特征的综合感知能力。在此基础上,全连接层采用 dropout方法对双通道卷积神经网络提取到的光谱数据特征和表征图像特征进行降维与融合,最终实现对葡萄品质指标的准确预测分析。[结果]与其他 3种葡萄品质检测方法相比,试验方法的均方根误差分别降低了 50.48%,57.44%,49.56%,相关系数分别提高了 4.89%,3.13%,2.17%。[结论]试验设计的双通道改进卷积神经网络品质检测分析方法能够实现对葡萄品质关键指标的无损检测。

    Abstract:

    [Objective] To achieve accurate and non -destructive testing of key quality indicators of fresh grapes,we proposed a dual -channel improved convolutional neural network (CNN ) method for fresh grape quality inspection.[Methods] A fiber -optic spectrometer and a CCD camera were used to collect visible near -infrared spectra and characterize the image information of grape samples.The dual channel improved CNN model was established and the Gramian angular field (GAF ) was used to convert one -dimensional spectral data into two-dimensional images for the extraction of effective features from spectra data.The convolutional layers with different sizes of convolution kernels were designed to extract features from the converted spectral two -dimensional images and grape characterization images,thus enhancing the comprehensive perception ability of the CNN model.On this basis,the dropout method was used for the fully connected layer to reduce and fuse the extracted features,ultimately achieving accurate prediction of key indicators of grape quality.[Results]] Compared with other three grape quality inspecting methods,the CNN method showed the root mean square error decreases of 50.48%,57.44%,and 49.56% and the correlation coefficient increases of 4.89%,3.13%,and 2.17%,respectively.[Conclusion] The dual -channel improved CNN method can achieve non -destructive testing of key indicators of grape quality

    参考文献
    相似文献
    引证文献
引用本文

王 丹,刘芳菲,纪晓峰.基于双通道改进卷积神经网络的新鲜葡萄品质检测分析[J].食品与机械,2024,40(12):89-94.
WANG Dan, LIU Fangfei, JI Xiaofeng. Fresh grape quality inspection based on dual-channel improved convolutional neural network[J]. Food & Machinery,2024,40(12):89-94.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。