EfficientNet V2算法融合GCN和CA-Transformer的腐烂草莓分类方法
CSTR:
作者:
作者单位:

(1. 青岛理工大学信息与控制工程学院 ,山东 青岛 266520; 2. 山东荣信水产食品集团股份有限公司 ,山东 日照 276800; 3. 青岛科技大学海洋科学与生物工程学院 ,山东 青岛 266042)

作者简介:

通讯作者:

高升(1988—),男,青岛理工大学讲师。E-mail:gaosheng@qut.edu.cn

中图分类号:

基金项目:

国家自然科学基金(编号:62001263);山东省青年基金(编号:ZR2023QC114)


Rotten strawberry classification based on EfficientNet V 2 algorithm fused with GCN and CA-Transformer
Author:
Affiliation:

(1. School of Information and Control Engineering , Qingdao University of Technology , Qingdao , Shandong 266520 , China; 2. Shandong Rongxin Aquatic Food Group Co ., Ltd., Rizhao , Shandong 276800 , China; 3. School of Marine Science and Bioengineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目 的 ]利用现代计算机视觉技术和深度学习方法,提升腐烂草莓分类的准确性和效率。[方 法 ]提出了基于EfficientNet V 2融合 GCN和CA-Transformer 的腐烂草莓分类方法。为基准模型添加了图卷积分支,通过聚合节点的周围信息来更新特征表示,更好地捕捉节点在图结构中的上下文信息;将带有注意力的 Transformer 结构融合到基准模型的主干中,用该结构替换部分卷积操作,实现全局和局部特征的融合,从而更好地识别草莓的腐烂情况;在传统残差结构的基础上引入学习参数,以实现特征的动态融合。[结果]GC-EfficientNet V 2模型相比基准模型在准确率上提高了1.86%,召回率提升了 1.49%。与Inception V 3、ResNet 50、VGGNet、Vision Transformer 和EfficientNet V 2-m模型相比,该模型的识别准确率分别提高了 0.93%,2.08%,2.79%,3.26%,0.47%。[结论]该模型能够准确地对腐烂草莓进行分类。

    Abstract:

    [Objective] Improving the accuracy and efficiency of rotting strawberry classification using modern computer vision techniques and deep learning methods.[Methods] A classification method for rotten strawberries based on EfficientNet V 2 fusion with Graph Convolutional Network (GCN ) and Channel -Attention Transformer (CA-Transformer ) has been proposed.Firstly,a graph convolution branch was added to the baseline model,which updated feature representations by aggregating the surrounding information of nodes,better capturing the contextual information of nodes in the graph structure.Secondly,this study integrated the Transformer structure with attention into the backbone of the baseline model,replacing some convolution operations with this structure to achieve the fusion of global and local features,thereby better identifying the rottenness of strawberries.Finally,learning parameters were introduced on the basis of the traditional residual structure to achieve dynamic feature fusion.[Results]] The GC -EfficientNet V 2 model improved the accuracy by 1.86% and the recall by 1.49% compared to the baseline model.Compared with Inception V 3,ResNet 50,VGGNet,Vision Transformer,and EfficientNet V2-m,the recognition accuracy of the model was improved by 0.93%,2.08%,2.79%,3.26%,and 0.47%,respectively.[Conclusion] This model can accurately classify rotten strawberries,providing some theoretical support for automatic strawberry sorting.

    参考文献
    相似文献
    引证文献
引用本文

王 伟,杨世忠,宫钰程,等. EfficientNet V2算法融合GCN和CA-Transformer的腐烂草莓分类方法[J].食品与机械,2024,40(12):81-88.
WANG Wei, YANG Shizhong, GONG Yucheng, et al. Rotten strawberry classification based on EfficientNet V 2 algorithm fused with GCN and CA-Transformer[J]. Food & Machinery,2024,40(12):81-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。