电子鼻和电子舌结合LSTM-AM-M 1DCNN检测
CSTR:
作者:
作者单位:

(1. 连云港职业技术学院信息工程学院 ,江苏 连云港 222000; 2. 北京大学药学院 ,北京 100191; 3. 连云港职业技术学院医药工程学院 ,江苏 连云港 222000; 4. 连云港职业技术学院机电工程学院 ,江苏 连云港 222000)

作者简介:

通讯作者:

马泽亮(1991—),男,连云港职业技术学院讲师,硕士。E-mail:2458300673@qq.com

中图分类号:

基金项目:

江苏高校“青蓝工程”资助项目(编号:2023);江苏省高等学校基础科学(自然科学)研究面上项目(编号:23KJD530003);连云港市科技计划项目(编号:SF2134);连云港市第六期“521工程”科研资助项目(编号:LYG06521202315)


Detection of the origin of wolfberry based on electronic nose and electronic tongue combined with LSTM-AM-M 1DCNN
Author:
Affiliation:

(1. School of Information Engineering , Lianyungang Technical College , Lianyungang , Jiangsu 222000 , China; 2. School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China; 3. School of Pharmaceutical Engineering , Lianyungang Technical College , Lianyungang , Jiangsu 222000 , China; 4. School of Mechatronic Engineering , Lianyungang Technical College , Lianyungang , Jiangsu 222000 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]实现枸杞产地的快速检测。[方法]提出了一种基于电子鼻和电子舌的长短期记忆网络—注意力机制—多尺度一维卷积神经网络 (LSTM -AM-M1DCNN)模型的枸杞产地快速判别方法。采用电子鼻和电子舌分别对 5种不同产地的枸杞进行检测,将采集回来的信息进行融合,并采用 LSTM -AM-M1DCNN对融合后的数据进行分类判别。[结果]相比于传统的 LSTM、CNN方法,LSTM -AM-M1DCNN能够有效提取到电子鼻和电子舌数据中深层特征信息,其测试集准确率、精确率、召回率、F1-Score分别为 97.4%,97.6%,97.4%,0.974。[结论]采用 LSTM -AM-M1DCNN解决了传统卷积神经网络无法充分提取时序、时空特征的缺陷,适合对电子鼻和电子舌采集到的数据进行处理,可有效判别枸杞产地。

    Abstract:

    [Objective] To achieve rapid detection of the origin of wolfberry.[Methods] A rapid discrimination method for the origin of wolfberry was proposed based on an electronic nose and tongue system using a Long Short -Term Memory network -Attention Mechanism -Multi -scale one -Dimensional Convolutional Neural Network (LSTM -AM-M1DCNN ) model.First,an electronic nose and tongue were used to detect wolfberries from five different origins.Then,the collected data were fused,and finally,the LSTM -AM-M1DCNN was employed to classify and discriminate the fused data.[Results]] Compared with traditional LSTM and CNN methods,the LSTM -AM-M1DCNN effectively extracted deep feature information from the electronic tongue and nose signals.The accuracy,precision,recall,and F1-Score of the test set reached 97.4%,97.6%,97.4%,and 0.974,respectively.[Conclusion] The use of LSTM -AM-M1DCNN overcomes the limitations of traditional convolutional neural networks that are not fully capable of extracting temporal and spatiotemporal features.It is suitable for processing data collected by the electronic nose and tongue and can effectively and accurately discriminate wolfberries from five different origins.

    参考文献
    相似文献
    引证文献
引用本文

枸杞产地 马泽亮,刘雅倩,程琦峰,等.电子鼻和电子舌结合LSTM-AM-M 1DCNN检测[J].食品与机械,2024,40(12):51-58.
MA Zeliang, LIU Yaqian, CHENG Qifeng, et al. Detection of the origin of wolfberry based on electronic nose and electronic tongue combined with LSTM-AM-M 1DCNN[J]. Food & Machinery,2024,40(12):51-58.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。