基于卷积神经网络的三聚氰胺太赫兹光谱定量分析
CSTR:
作者:
作者单位:

(内蒙古科技大学 自动化与电气工程学院 ,内蒙古 包头 014010)

作者简介:

通讯作者:

燕芳(1980—),女,内蒙古科技大学教授,硕士生导师,博士。E-mail:0472yanfang@163.com

中图分类号:

基金项目:

内蒙古自治区关键技术攻关计划项目(编号:2021GG0361);内蒙古自治区直属高校基本科研业务费项目


Quantitative analysis of melamine in terahertz spectra based on convolutional neural network
Author:
Affiliation:

(School of Automation and Electrical Engineering , Inner Mongolia University of Science and Technology , Baotou , Inner Mongolia 014010 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]结合卷积神经网络与太赫兹时域光谱技术针对奶粉中的非法添加剂三聚氰胺进行定量分析。[方法]使用透射式太赫兹时域光谱系统测得三聚氰胺与奶粉单质及混合物的太赫兹吸收谱,分别采用 S-G平滑、高斯平滑、滑动平均和 R-Loess平滑等方法对原始光谱数据进行校正,并建立偏最小二乘 (PLS)回归模型,通过对比模型评价标准以确定最佳的太赫兹光谱校正预处理方法;选择 S-G平滑校正处理后的 PLS模型作为混合样片的定量分析模型;分别建立了基于偏最小二乘 (PLS)、最小二乘支持向量机 (LS-SVM)、反向传播神经网络 (BPNN)及卷积神经网络 (CNN)的定量回归模型,并对混合样片中的三聚氰胺含量进行了预测。[结果]PLS、LS-SVM、BPNN、CNN 4种模型的预测集相关系数分别为 0.997 1,0.997 7,0.998 1,0.998 7,预测集均方根误差分别为 0.551%,0.494%,0.437%,0.374%。[结论]与其他 3种模型相比,CNN回归模型的预测精度最高,更适用于准确检测奶粉中三聚氰胺的含量。

    Abstract:

    [Objective] Combining convolutional neural networks and terahertz time -domain spectroscopy for quantitative analysis of the illegal additive melamine in milk powder.[Methods] The terahertz absorption spectra of melamine,milk powder both individually and in mixtures were measured using a transmission -type terahertz time -domain spectroscopy system.Various methods such as Savitzky -Golay (S-G) smoothing,Gaussian smoothing,moving average,and R -Loess smoothing were employed to correct the original spectral data.A partial least squares (PLS) regression model was established,and the optimal terahertz spectroscopic correction preprocessing method was determined by comparing model evaluation criteria.The PLS model corrected with S -G smoothing was chosen for the quantitative analysis of the mixed samples.Quantitative regression models based on partial least squares (PLS),least squares support vector machine (LS-SVM ),backpropagation neural network (BPNN ),and convolutional neural network (CNN ) were separately established,and the content of melamine in the mixed samples was predicted.[Results]] The correlation coefficients of the prediction set for the PLS,LS-SVM,BPNN,and CNN models were 0.997 1,0.997 7,0.998 1,and 0.998 7,respectively,with prediction set root mean square errors of 0.551%,0.494%,0.437%,and 0.374%,respectively.[Conclusion] Compared to the other three models,the CNN regression model has the highest prediction accuracy and is more suitable for accurately detecting the content of melamine in milk powder.

    参考文献
    相似文献
    引证文献
引用本文

刘洋硕,燕 芳,李文文,等.基于卷积神经网络的三聚氰胺太赫兹光谱定量分析[J].食品与机械,2024,40(11):41-46.
LIU Yangshuo, YAN Fang, LI Wenwen, et al. Quantitative analysis of melamine in terahertz spectra based on convolutional neural network[J]. Food & Machinery,2024,40(11):41-46.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。