基于浮选法的鼠笼式鲜枸杞分级机的设计与试验
CSTR:
作者:
作者单位:

(1. 宁夏大学食品科学与工程学院 ,宁夏 银川 750021; 2. 宁夏大学土木与水利工程学院 ,宁夏 银川 750021)

作者简介:

通讯作者:

康宁波(1984—),男,宁夏大学正高级实验师,硕士生导师,博士。E-mail:knb@nxu.edu.cn

中图分类号:

基金项目:

宁夏回族自治区自然科学基金联合基金(编号:2022AAC03022);国家自然科学基金(编号:32260617)


Design and test of mouse cage fresh wolfberry classifier based on flotation method
Author:
Affiliation:

(1. School of Food and Wine , Ningxia University , Yinchuan , Ningxia 750021 , China; 2. School of Civil and Hydraulic Engineering , Ningxia University , Yinchuan , Ningxia 750021 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]提高鲜枸杞分级效率。[方法]设计基于浮选法的鼠笼式鲜枸杞分级机,以鲜枸杞横径为分级指标。利用鲜枸杞密度小于水的物理特性,运用浮选原理研制鲜枸杞分级机。通过力学分析及试验测量,计算和规定了分级机的理论结构参数。基于 ANSYS Fluent 模拟分级过程,分析模拟结果,并验证和精确该分级机的理论结构参数。[结果]分级机具体参数为:鼠笼直径 0.34 m,长度 2.1 m,辊杠直径 10 mm,鼠笼倾斜角度 17°,水流量 1.7×10-2 m3/s,水流速3.5 m/s,鼠笼转速 12 r/min。平行试验结果表明,鲜枸杞平均分级准确率约为 93.79%,鲜枸杞无损率为 98.21%;批量试验表明,鲜枸杞平均生产能力为 1 020.6 kg/h,平均分级准确率为 92.85%。[结论]试验研制的基于浮选法的鼠笼式鲜枸杞分级机能够实现鲜枸杞低损、快速、高效分级。

    Abstract:

    [[Objective ]] Improve the rapid grading technology of fresh goji berries.[[Methods ]] Utilizing the physical properties of fresh goji berries with a density lower than water,a fresh goji berry classifier was developed using flotation principles.The theoretical structural parameters of the classifier were calculated and specified through mechanical analysis and experimental measurements.Based on ANSYS Fluent simulation of the grading process,analyzed the simulation results,and verified and accurately determined the theoretical structural parameters of the classifier.[[Results]] The specific parameters of the classifier were:cage diameter 0.34 m,length 2.1 m,roller bar diameter 10mm,cage tilt angle 17°,water flow rate 1.7×10-2 m3/s,water flow rate 3.5 m/s,cage speed 12 r/min.Using parallel and batch testing methods,the production efficiency and capacity of the prototype were verified.The parallel test results showed that the average classification accuracy of fresh goji berries was about 93.79%,and the non -destructive rate of fresh goji berries was 98.21%.Batch experiments have shown that the average production capacity of fresh goji berries was 1 020.6 kg/h,and the average classification accuracy was 92.85%.[[Conclusion ]] The squirrel cage fresh goji berry classifier developed in this article based on flotation method can achieve low loss,fast,and efficient classification of fresh goji berries.

    参考文献
    相似文献
    引证文献
引用本文

瞿前进,张 军,康宁波,等.基于浮选法的鼠笼式鲜枸杞分级机的设计与试验[J].食品与机械,2024,40(10):86-92.
QU Qianjin, ZHANG Jun, KANG Ningbo, et al. Design and test of mouse cage fresh wolfberry classifier based on flotation method[J]. Food & Machinery,2024,40(10):86-92.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。