融合Fasternet与YOLOv 5模型的鸡蛋外观检测
CSTR:
作者:
作者单位:

(长江大学计算机科学学院 ,湖北 荆州 434023)

作者简介:

通讯作者:

陈中举(1976—),男,长江大学副教授,硕士。E-mail:chenzjdc@163.com

中图分类号:

基金项目:

湖北省教育厅科学技术研究项目(编号:B2021052)


Detection of egg appreance based on Fasternet and YOLOv 5 model
Author:
Affiliation:

(School of Computer Science , Yangtze University , Jingzhou , Hubei 434023 , China )

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]高效识别自动化生产过程中存在蛋壳瑕疵的鸡蛋。[方法]设计了一种融合 Fasternet 模块与 YOLOv 5s的鸡蛋外观检测模型 FC -YOLOv 5。该模型使用 Kmeans++ 算法对数据集重新聚类,优化先验框;将C3结构中的Bottleneck 模块替换为 FasternetBlock 模块,减少模型参数量,同时提高模型检测精度;采用 Soft-NMS 算法作为非极大值抑制算法,提高重叠特征的检测效果;引入 CBAM注意力机制,增加网络模型对重要特征的提取能力。[结果]与YO-LOv 5原模型相比,改进后的 FC-YOLOv 5模型在 mAP@ 0.5和mAP@ 0.5:0.95上分别提高了 3.2%和5.2%,计算量和参数量分别减少了 19.6%和16.9%,且与 YOLOv 7-tiny和YOLOv 8模型相比有显著优势。[结论]试验方法在鸡蛋外观检测场景下可提高检测精度并降低参数量,达到鸡蛋自动化生产中的次品蛋识别目的。

    Abstract:

    [Objective ] Efficiently identify eggs with defects on their appearance in the automatic production process.[Methods ] Designed a detection model based on fusing Fasternet module and YOLOv 5s.The model used the Kmeans ++ algorithm to re -cluster the dataset and optimizeed the bounding box.The Bottleneck module in the C 3 structure was replaced by the Fasternet Block module to reduce the parameters and improve the percision in the process of detection.The Soft -NMS,a non -maximum suppression was utilized to improve the detection of eggs with similar features.The CBAM attention mechanism was introduced to enhance the function of extracting important features.[Results] Compared with the YOLOv 5 original model,the experiment results showed that the mAP@ 0.5 and mAP@ 0.5:0.95 respectively had increased by 3.2% and 5.2%,respectively.The amount of calculation and parameters was reduced by 19.6% and 16.9%,respectively.Compared with YOLOv 7-tiny and YOLOv 8 models,the improved model has significant advantages.[Conclusion ] The experimental method can optimize the detection percision and reduces the parameters in the detection of egg' appreance,so as to achieve the purpose of identifying defected eggs in the automatic production.Efficiently identify eggs with defects on their appearance in the automatic production process.

    参考文献
    相似文献
    引证文献
引用本文

魏晶鑫,陈中举,许浩然.融合Fasternet与YOLOv 5模型的鸡蛋外观检测[J].食品与机械,2024,40(8):105-112,165.
WEI Jingxin, CHEN Zhongju, XU Haoran. Detection of egg appreance based on Fasternet and YOLOv 5 model[J]. Food & Machinery,2024,40(8):105-112,165.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。