基于改进YOLOv 5s的海水鱼种类识别
CSTR:
作者:
作者单位:

(1. 江苏海洋大学机械工程学院 ,江苏 连云港 222005; 2. 江苏海洋大学海洋工程学院 ,江苏 连云港 222005)

作者简介:

通讯作者:

芦新春(1980—),女,江苏海洋大学副教授,硕士生导师,硕士。E-mail:luxinchun111@126.com

中图分类号:

基金项目:

连云港市重大技术攻关“揭榜挂帅”项目(编号:CGJBGS2204)


Marine fish species recognition based on improved YOLOv 5s
Author:
Affiliation:

(1. School of Mechanical Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China; 2. School of Ocean Engineering , Jiangsu Ocean University , Lianyungang , Jiangsu 222005 , China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]为提高不同种类海水鱼的识别准确率,提出一种改进 YOLOv 5s的海水鱼种类识别方法。[方法]采用 K-means++ 算法对海水鱼的真实框进行聚类计算,获得与自建数据集更加匹配的锚框;用SIoU损失函数替换 CIoU损失函数作为边界框回归算法,提高边界框回归精度与收敛速度;改进骨干网络的部分 C3模块,将CA协调注意力机制融入 C3模块中,在降低模型参数量的同时还能提高模型的识别精度与检测速度;最后,优化模型的路径聚合网络,以此增强网络的特征融合能力。[结果]改进后的 Our-YOLOv 5s模型在数据集中测得平均精度均值为 98.4%、检测速度为64 s-1,分别比原模型提高了 2.4个百分点,6 s-1。[结论]该模型能够满足对海水鱼的实时检测要求。

    Abstract:

    [Objective ] In order to improve the recognition accuracy of different kinds of marine fish,an improved YOLOv 5s marine fish species recognition method was proposed..[Methods ] K-means++algorithm was used to cluster the real frames of marine fish,and more matching anchor frames were obtained with the self built data set.CIoU Loss function was replaced by SIoU Loss function as the boundary box regression algorithm to improve the accuracy and rate of convergence of the boundary box regression.Improved some C 3 modules of the backbone network,and integrated CA coordination attention mechanism into the C 3 module,which improved the recognition accuracy and detection speed of the model while reducing the number of model parameters.Finally,optimized the path aggregation network of the model to enhance the feature fusion ability of the network.[Results] The experimental results showed that the improved Our-YOLOv 5s model had a mAP of 98.4% and a detection speed of 64 s-1 in the dataset,which was 2.4% and 6 s-1 higher than the original model,respectively.[Conclusion ] The model can meet the real-time detection requirements of marine fish.

    参考文献
    相似文献
    引证文献
引用本文

张海峰,芦新春,冯 博,等.基于改进YOLOv 5s的海水鱼种类识别[J].食品与机械,2024,40(8):84-92.
ZHANG Haifeng, LU Xinchun, FENG Bo, et al. Marine fish species recognition based on improved YOLOv 5s[J]. Food & Machinery,2024,40(8):84-92.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。