基于视觉Transformer的马铃薯薯形与大小自动分级
CSTR:
作者:
作者单位:

(1. 兰州资源环境职业技术大学信息工程学院,甘肃 兰州 730021;2. 甘肃农业大学机电工程学院,甘肃 兰州 730070)

作者简介:

樊宏鹏,男,兰州资源环境职业技术大学讲师,硕士。

通讯作者:

于鹏飞(1985—),男,兰州资源环境职业技术大学副教授,学士。E-mail:yupfei@lzre.edu.cn

中图分类号:

基金项目:

甘肃省教育厅高校教师创新基金项目(编号:2023A-226);兰州资源环境职业技术大学科研能力提升项目(编号:X2023A-11)


Automatic grading of potato shape and size based on visual Transformer
Author:
Affiliation:

(1. Department of College of Information Engineering, Lanzhou Resources & Environment VOC-teach University, Lanzhou, Gansu 730021, China; 2. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]解决基于人工特征设计分级方法精度低、鲁棒性差的问题。[方法]提出了一种强泛化的Transformer薯形与大小自动分级方法。基于Transformer模型构建2个PotatoViT模型,并完成马铃薯薯形分级和大小分级任务;利用迁移策略和数据增广方法训练出鲁棒性分级模型;通过测试集定量分析,验证了研究所提方法在马铃薯分级中的有效性。[结果]PotatoViT模型对薯形分级的准确率和模型F1得分分别为96.36%,94.75%,对大小分级的准确率和模型F1得分分别为89.66%,85.16%,分级精度优于VGG16、ResNet50和MobileNetV3网络模型。[结论]研究所提方法对马铃薯薯形与大小的准确、实时检测是可行的。

    Abstract:

    [Objective] Aiming at the problems of low accuracy and poor robustness in the previous classification methods based on artificial features. [Methods] A strong generalization automatic classification method of potato shape and size was proposed in this study. First, two potato ViT models were built based on Transformer model to complete potato shape grading and size grading tasks in parallel. Secondly, a robust model was trained by using migration strategy and data augmentation method. Finally, the effectiveness of this method in potato grading was verified by quantitative analysis of test sets. [Results] The experimental results show that the potato ViT model achieves 96.36% and 94.75% for potato shape classification, and 89.66% and 85.16% for size grading in terms of accuracy and μF1 index. The classification accuracy was better than VGG16, ResNet50 and MobileNetV3 network models. [Conclusion] The results shows that it is feasible to apply the proposed method for the real-time and accurate detection of potato shape and size. The results of this study can provide theoretical and technical support for potato intelligent grading.

    参考文献
    相似文献
    引证文献
引用本文

樊宏鹏,于鹏飞,杨 森.基于视觉Transformer的马铃薯薯形与大小自动分级[J].食品与机械,2024,(7):111-116.
FAN Hongpeng, YU Pengfei, YANG Sen. Automatic grading of potato shape and size based on visual Transformer[J]. Food & Machinery,2024,(7):111-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-12
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。