基于机器视觉的苹果表损智能检测系统设计
CSTR:
作者:
作者单位:

(1. 常州大学机械与轨道交通学院,江苏 常州 213164;2. 河海大学机电工程学院,江苏 常州 213200;3. 中国科学院合肥物质科学研究所智能机械研究所,安徽 合肥 230031)

作者简介:

秦寅初,男,常州大学在读硕士研究生。

通讯作者:

李涛 (1983—),男,常州大学副教授,博士。E-mail:roboylee@163.com

中图分类号:

基金项目:

江苏省产业前瞻与关键核心技术重点项目(编号:BE2021016-4)


Design of apple damage automatic detection system based on machine vision
Author:
Affiliation:

(1. College of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, Jiangsu 213164, China; 2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213200, China; 3. Institute of Intelligent Machinery, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]满足苹果外观品质和大小综合分级的现实需求,解决中国苹果人工分选效率低,分选设备结构复杂、成本高等问题。[方法]提出一种YOLOv5s-apple模型,在主干网络中引入Transformer模块和CBAM注意力模块,同时加入加权双向特征金字塔网络(Bi-FPN)改进颈部网络,并结合HALCON软件,利用自行设计的一种苹果表损智能检测系统进行表损分拣和大小分级。[结果]与原YOLOv5s模型相比,YOLOv5s-apple模型的mAP提升了6.2%,检测系统的分拣分级准确率可达97.5%,试验系统的处理速度为5 s/个。[结论]试验系统可以有效地进行苹果分级分选。

    Abstract:

    [Objective] To meet the practical requirements for comprehensive grading based on the appearance quality and size of apples, and to address issues such as low efficiency of manual sorting, complex structure, and high cost of sorting equipment for Chinese apples. [Methods] A YOLOv5s-apple model was proposed. The transformer module and CBAM attention module were introduced into the backbone network, and the weighted Bidirectional feature pyramid network (Bi-FPN) was added to improve the neck network. Then, combined with HALCON software, a self-designed intelligent apple damage detection system was used to carry out damage sorting and size classification. [Results] The experimental results showed that compared with the original YOLOv5s model, the mAP of the YOLOv5s-Apple model was improved by 6.2%, and the accuracy of apple sorting system could reach 97.5%, the processing speed of the system was 5 s/apple. [Conclusion] The system can effectively carry out apple grading and sorting, and provide a reference for the intellectualization and low cost of Apple detection equipment.

    参考文献
    相似文献
    引证文献
引用本文

秦寅初,李 涛,李 旭,等.基于机器视觉的苹果表损智能检测系统设计[J].食品与机械,2024,40(6):138-142.
QIN Yinchu, LI Tao, LI Xu, et al. Design of apple damage automatic detection system based on machine vision[J]. Food & Machinery,2024,40(6):138-142.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。