鲸鱼算法改进极限学习机的葡萄酒品质评价研究
CSTR:
作者:
作者单位:

(1. 太原旅游职业学院,山西 太原 030032;2. 沈阳药科大学,辽宁 沈阳 110015;3. 山西大同大学,山西 大同 037009;4. 中北大学,山西 太原 030051)

作者简介:

窦力(1984—),男,太原旅游职业学院讲师,硕士。E-mail:lwpo235@21cn.com

通讯作者:

中图分类号:

基金项目:

山西省教育科学“十三五”规划课题(编号:GH-22015402)


Study on wine quality evaluation based on extreme learning machine improved by whale optimization algorithm
Author:
Affiliation:

(1. Taiyuan Tourism College, Taiyuan, Shanxi 030032, China; 2. Shenyang Pharmaceutical University, Shenyang, Liaoning 110015, China; 3. Shanxi Datong University, Datong, Shanxi 037009, China; 4. North University of China, Taiyuan, Shanxi 030051, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法。[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型。通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型。[结果]与GA-ELM、PSO-ELM和传统的ELM模型相比,WOA-ELM的准确率最高,达到了0.944 5,GA-ELM的准确率为0.929 0,PSO-ELM的准确率为0.906 1,传统的ELM方法准确率为0.817 7。[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性。

    Abstract:

    [Objective] In order to solve the issue of excessive redundant information in near-infrared spectroscopy, enhance the accuracy of wine quality evaluation models, a rapid and non-destructive method was established for wine quality evaluation. [Methods] A wine quality evaluation model was proposed based on competitive adaptive reweighting sampling method for feature wavelength screening and extreme learning machine improved by whale optimization algorithm. Various feature wavelength screening methods such as competitive adaptive reweighting sampling was used, and the most suitable method for wine spectral feature wavelength screening was determined. In response to the problem of initial value and hidden layer bias in ELM, the whale optimization method was used to optimize the initial value and hidden layer bias of ELM, and an wine quality evaluation model based on extreme learning machine improved by whale optimization algorithm was constructed. [Results] Compared with GA-ELM, PSO-ELM, and the traditional ELM model, the accuracy of WOA-ELM was the highest, reaching 0.944 5, which was better than GA-ELM (0.929 0), PSO-ELM (0.906 1) and traditional ELM (0.817 7). [Conclusion] The parameters of the ELM model optimized by intelligent algorithms can effectively improve the accuracy of wine quality evaluation.

    参考文献
    相似文献
    引证文献
引用本文

窦 力,郑 崴,李柏秋,等.鲸鱼算法改进极限学习机的葡萄酒品质评价研究[J].食品与机械,2024,40(6):62-68.
DOU Li, ZHENG Wei, LI Baiqiu, et al. Study on wine quality evaluation based on extreme learning machine improved by whale optimization algorithm[J]. Food & Machinery,2024,40(6):62-68.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。