基于改进Alexnet的轻量化香蕉成熟度检测
CSTR:
作者:
作者单位:

(1. 广西农业职业技术大学,广西 南宁 530007;2. 桂林理工大学南宁分校,广西 南宁 530001)

作者简介:

蒋瑜,男,广西农业职业技术大学工程师,硕士。

通讯作者:

王灵敏(1989—),女,桂林理工大学南宁分校工程师,硕士。E-mail:742709113@qq.com

中图分类号:

基金项目:

广西高校中青年教师科研基础能力提升项目(编号:2024KY1247,2020KY36006)


Lightweight banana ripeness detection based on improved Alexnet
Author:
Affiliation:

(1. Guangxi Agricultural Vocational and Technical University, Nanning, Guangxi 530007, China; 2. Guilin University of Technology at Nannning, Nanning, Guangxi 530001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:获得轻量化Mini-Alexnet香蕉成熟度分级模型并应用于安卓移动端。方法:结合不同成熟度香蕉外部特征,对Alexnet网络模型进行结构调整,删除部分卷积层,并利用全局平均池化代替全连接层缩减模型参数和所需内存,且更换更大卷积核提取香蕉表皮全局特征,得到改进后轻量化Mini-Alexnet网络模型,再将Mini-Alexnet网络模型部署至安卓移动端APP,并验证其可行性和实用性。结果:Mini-Alexnet模型仅为11.6 MB,香蕉五等级成熟度判别准确率为97.76%,移动端APP香蕉成熟度自动判别系统本地图片识别模式、拍照识别模式、实时识别模式准确率分别为86.66%,79.33%,74.00%,平均准确率可达80%。结论:改进后Mini-Alexnet模型占内存空间更小。

    Abstract:

    Objective: To obtain a lightweight Mini-Alexnet banana ripeness grading model and apply it to Android mobile devices. Methods: Based on the external characteristics of bananas with different ripeness, the Alexnet network model was restructured, part of the convolutional layer was deleted, and the global average pooling was used instead of the full connection layer to reduce the model parameters and required memory. A larger convolutional kernel was replaced to extract the global characteristics of the banana skin to achieve an improved lightweight Mini-Alexnet network model. Then the Mini-Alexnet network model was deployed as Android mobile APP, and its feasibility and practicability were verified. Results: The Mini-Alexnet model was only 11.6 MB, and the identification accuracy rate of banana ripeness level 5 was 97.76%. The accuracy rate of local picture recognition mode, photo recognition mode and real-time recognition mode of the mobile APP banana ripeness automatic identification system was 86.66%, 79.33% and 74.00%, respectively, with an average accuracy rate of 80%. Conclusion: The improved Mini-Alexnet model occupies less memory space.

    参考文献
    相似文献
    引证文献
引用本文

蒋 瑜,王灵敏.基于改进Alexnet的轻量化香蕉成熟度检测[J].食品与机械,2024,40(5):128-136.
JIANG Yu, WANG Lingmin. Lightweight banana ripeness detection based on improved Alexnet[J]. Food & Machinery,2024,40(5):128-136.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。