基于改进ELM和计算机视觉的核桃缺陷检测
CSTR:
作者:
作者单位:

(1. 江西交通职业技术学院,江西 南昌 330013;2. 南昌航空大学,江西 南昌 330063)

作者简介:

徐杰(1983—),男,江西交通职业技术学院副教授,硕士。E-mail: xujie1983@163.com

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(编号:62262043)


Walnut defect detection based on improved ELM and computer vision
Author:
Affiliation:

(1. Jiangxi V & T College of Communications, Nanchang, Jiangxi 330013, China; 2. Nanchang Hangkong University, Nanchang, Jiangxi 330063, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决现有食品生产企业在核桃缺陷检测中存在的准确性低和效率差等问题。方法:提出一种结合改进极限学习机和计算机视觉的核桃缺陷快速无损检测方法。通过计算机视觉采集核桃大部分表面图像信息,通过高斯滤波对图像进行预处理,通过迭代和保留信息变量法对颜色和纹理特征进行优化,最后,通过改进蝴蝶算法对极限学习机参数(随机权重和偏差)进行优化,实现核桃缺陷快速无损检测,并对所提缺陷检测方法的性能进行验证。结果:试验方法可以实现核桃多种缺陷的有效判别。与常规方法相比,试验方法在核桃缺陷检测中具有更优的检测准确率和效率,检测准确率>98.00%,平均检测时间<9.00 ms。结论:将智能算法和机器视觉技术相结合可以实现核桃缺陷的快速无损检测。

    Abstract:

    Objective: To address the issues of low accuracy and poor efficiency in walnut defect detection among existing food production enterprises. Methods: Proposed a fast non-destructive detection method for walnut defects that combined improved extreme learning machines and computer vision. Collected most of the surface image information of walnuts through computer vision, preprocess the image through Gaussian filtering, optimize color and texture features through iterative and information preserving variable methods, finally, by improving the butterfly algorithm to optimize the parameters of the Extreme Learning Machine (random weights and deviations), fast non-destructive detection of walnut defects could be achieved, and verify the performance of the proposed defect detection method. Results: The experimental method could effectively discriminate various defects in walnuts. Compared with conventional methods, the experimental method had superior detection accuracy and efficiency in walnut defect detection, with a detection accuracy rate > 98.00% and an average detection time < 9.00 ms. Conclusion: Combining intelligent algorithms with machine vision technology can achieve rapid non-destructive detection of walnut defects.

    参考文献
    相似文献
    引证文献
引用本文

徐 杰,刘 畅.基于改进ELM和计算机视觉的核桃缺陷检测[J].食品与机械,2024,40(5):122-127.
XU Jie, LIU Chang. Walnut defect detection based on improved ELM and computer vision[J]. Food & Machinery,2024,40(5):122-127.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。