基于改进WOA-LSSVM和高光谱的猕猴桃糖度无损检测
CSTR:
作者:
作者单位:

(1. 南阳职业学院,河南 南阳 473000;2. 南阳市药食同源资源开发工程技术研究中心,河南 南阳 473000;3. 南阳理工学院,河南 南阳 473000;4. 河南农业大学,河南 郑州 450046)

作者简介:

章恺(1984—),男,南阳职业学院讲师,硕士。E-mail:zniq189@yeah.net

通讯作者:

中图分类号:

基金项目:

河南省科技攻关项目(编号:22104370125)


Non destructive detection of kiwifruit sugar content based on improved WOA-LSSVM and hyperspectral analysis
Author:
Affiliation:

(1. Nanyang Vocational College, Nanyang, Henan 473000, China; 2. Nanyang Eucommia Ulmoides Gum Extraction Engineering Technology Research Center, Nanyang, Henan 473000, China; 3. Nanyang Institute of Technology, Nanyang, Henan 473000, China; 4. Henan Agricultural University, Zhengzhou, Henan 450046, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决猕猴桃糖度无损检测方法存在的准确性差和效率低等问题。方法:提出一种将高光谱检测技术、最小二乘支持向量机和改进的鲸鱼算法相结合的猕猴桃糖度无损检测方法。通过高光谱检测系统采集猕猴桃的高光谱信息,对其进行预处理和特征波长筛选后,输入改进鲸鱼算法优化的最小二乘支持向量机模型,实现猕猴桃糖度的快速无损检测,并验证其性能。结果:所提方法可以实现猕猴桃糖度的快速无损检测,测试集决定系数为0.965 2,测试集均方根误差为0.880 5,平均检测时间为1.06 s。结论:将机器学习算法与高光谱检测技术相结合,可以实现猕猴桃糖度的快速无损检测。

    Abstract:

    Objective: Addressing the issues of poor accuracy and low efficiency in non-destructive testing methods for kiwifruit sugar content. Methods: Proposing a non-destructive testing method for kiwifruit sugar content that combined hyperspectral detection technology, least squares support vector machine, and improved whale algorithm. By collecting hyperspectral information of kiwifruit through a hyperspectral detection system, after preprocessing and feature wavelength screening, and then input into an improved whale algorithm optimized least squares support vector machine model to achieve rapid and non-destructive detection of kiwifruit sugar content, and verify its performance. Results: The proposed method could achieve rapid and non-destructive detection of kiwifruit sugar content, with a determination coefficient of 0.965 2 for the test set, a root mean square error of 0.880 5 for the test set, and an average detection time of 1.06 seconds. Conclusion: Combining machine learning algorithms with hyperspectral detection technology can achieve rapid and non-destructive detection of kiwifruit sugar content.

    参考文献
    相似文献
    引证文献
引用本文

章 恺,朱丽芳,李入林,等.基于改进WOA-LSSVM和高光谱的猕猴桃糖度无损检测[J].食品与机械,2024,40(5):107-112,226.
ZHANG Kai, ZHU Lifang, LI Rulin, et al. Non destructive detection of kiwifruit sugar content based on improved WOA-LSSVM and hyperspectral analysis[J]. Food & Machinery,2024,40(5):107-112,226.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。