基于极端气温的西红柿Arrhenius品质预测耦合模型构建
CSTR:
作者:
作者单位:

(1. 浙江海洋大学食品与药学学院,浙江 舟山 316022; 2. 北京市农林科学院信息技术研究中心,北京 100097;3. 北京市农林科学院农产品质量追溯国家工程研究中心,北京 100097; 4. 北京市气候中心,北京 100097;5. 农业农村部农产品冷链物流技术重点实验室,北京 100097;6. 塔里木大学食品科学与工程学院,新疆 阿拉尔 843300)

作者简介:

马旻臻,男,浙江海洋大学在读硕士研究生。

通讯作者:

史策(1989—),女,北京市农林科学院信息技术研究中心副研究员,博士。E-mail: shice001@163.com

中图分类号:

基金项目:

国家自然科学基金(编号:32071917);青年北京学者;浙江省“尖兵”“领雁”研发攻关计划项目(编号:2023C02006);兵团指导性科技计划项目(编号:TDZKCX202207)


The establishment of Arrhenius prediction model for tomato quality under extreme meteorological temperatures
Author:
Affiliation:

(1. College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; 2. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 3. National Engineering Research Center of Agricultural Product Quality Traceability, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 4. Beijing Climate Center, Beijing 100097, China; 5. Key Laboratory of Cold Chain Logistics Technology for Agricultural Products, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; 6. School of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:基于Arrhenius方程结合气象温度数据构建西红柿品质预测耦合模型,预测西红柿在极端气温下短期贮运过程的品质变化。方法:分析2020年潍坊、保定、大兴气象温度数据,选取7个温度点模拟西红柿在短期贮运过程中极端温度的变化范围。基于Arrhenius方程,结合气温与失重率、硬度、色差(ΔE)和感官评分(SE)构建西红柿品质预测耦合模型,并选取-10,12 ℃进行验证。结果:贮运48 h内,西红柿的失重率和ΔE逐渐增加,SE和硬度逐渐降低。基于Arrhenius方程结合气象温度数据构建品质预测耦合模型,0~36 ℃贮藏条件下,失重率和SE变化采用零级反应拟合,硬度与ΔE变化分别采用一级反应与半级反应拟合;-15~0 ℃贮藏条件下,SE、ΔE、失重率与硬度的变化均采用零级反应拟合。对预测模型进行验证,12 ℃贮藏条件下西红柿的失重率、硬度与SE的相对误差在15%以内(除48 h的);-10 ℃贮藏条件下,西红柿的硬度与SE的相对误差在15%以内(除48 h的)。结论:基于Arrhenius方程结合极端气象温度数据构建的西红柿品质预测耦合模型能够有效预测极端温度条件下西红柿的品质。

    Abstract:

    Objective: A coupled model for predicting tomato quality during short-term storage and transportation under extreme temperatures, utilizing the Arrhenius equation in conjunction with meteorological temperature data, to forecast the quality changes in tomatoes during the short-term storage and transportation processes under extreme weather conditions. Methods: Analyzing the meteorological temperature data for the year 2020 in Weifang, Baoding, and Daxing, 7 temperature points were selected to simulate the range of temperature variations for short-term storage and transportation of tomatoes. By utilizing the Arrhenius equation and integrating temperature with weight loss rate, hardness, color difference (ΔE), and sensory evaluation scores (SE), a coupled model was developed for predicting tomato quality. The model was validated by using temperatures of -10 ℃ and 12 ℃. Results: Within 48 hours of storage and transportation, Loss rate and ΔE of tomatoes gradually increased, while evaluation scores (SE) and hardness decreased gradually. The quality prediction coupling model based on the Arrhenius equation combined with meteorological temperature data was constructed. Under storage conditions from 0 to 36 ℃, changes in loss rate and SE were fitted with zero-order reactions, while changes in hardness and ΔE were fitted with first-order and half-order reactions, respectively. For storage conditions from -15 to 0 ℃, zero-order reaction fits were applied to model the changes in SE, ΔE, weight loss rate, and hardness. Validation of the predictive model revealed that, under 12 ℃ storage conditions, the relative errors for tomato weight loss rate, hardness, and SE were within 15%, except for the 48 hour prediction. Under -10 ℃ storage conditions, the relative errors for tomato hardness and SE were within 15%, excluding the 48 hour prediction. Conclusion: The coupled model for tomato quality prediction, constructed by integrating the Arrhenius equation with extreme meteorological temperature data, proves to be effective in forecasting the quality of tomatoes under extreme temperature conditions.

    参考文献
    相似文献
    引证文献
引用本文

马旻臻,王 冀,史 策,等.基于极端气温的西红柿Arrhenius品质预测耦合模型构建[J].食品与机械,2024,40(4):112-120.
MA Minzhen, WANG Ji, SHI Ce, et al. The establishment of Arrhenius prediction model for tomato quality under extreme meteorological temperatures[J]. Food & Machinery,2024,40(4):112-120.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-21
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。